首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns a non-linear system of wave equations describing the motion in space of an elastic string. We derive the equations, determine the equilibrium solutions and, using the methods of quasilinear hyperbolic systems, prove that the natural initial, boundary value problem has classical solutions existing in neighbourhoods of the “stretched” equilibrium solutions. We then prove that the positions of the endpoints of the string can be controlled in such a way that the string moves from an equilibrium in one location to an equilibrium in another location.  相似文献   

2.
In this article a numerical method for solving a two‐dimensional transport equation in the stationary case is presented. Using the techniques of the variational calculus, we find the approximate solution for a homogeneous boundary‐value problem that corresponds to a square domain D2. Then, using the method of the fictitious domain, we extend our algorithm to a boundary value problem for a set D that has an arbitrary shape. In this approach, the initial computation domain D (called physical domain) is immersed in a square domain D2. We prove that the solution obtained by this method is a good approximation of the exact solution. The theoretical results are verified with the help of a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
The immersed boundary (IB) method is a computational framework for problems involving the interaction of a fluid and immersed elastic structures. It is characterized by the use of a uniform Cartesian mesh for the fluid, a Lagrangian curvilinear mesh on the elastic material, and discrete delta functions for communication between the two grids. We consider a simple IB problem in a two‐dimensional periodic fluid domain with a one‐dimensional force generator. We obtain error estimates for the velocity field of the IB solution for the stationary Stokes problem. We use this result to prove convergence of a simple small‐amplitude dynamic problem. We test our error estimates against computational experiments. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
In this paper, we consider an initial boundary value problem for the 3‐dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density‐dependent viscosity and resistivity coefficients over a bounded smooth domain. Global in time unique strong solution is proved to exist when the L2 norms of initial vorticity and current density are both suitably small with arbitrary large initial density, and the vacuum of initial density is also allowed. Finally, we revisit the Navier‐Stokes model without electromagnetic effect. We find that this initial boundary problem also admits a unique global strong solution under other conditions. In particular, we prove small kinetic‐energy strong solution exists globally in time, which extends the recent result of Huang and Wang.  相似文献   

5.
We consider the problem of a one-dimensional elastic filament immersed in a two-dimensional steady Stokes fluid. Immersed boundary problems in which a thin elastic structure interacts with a surrounding fluid are prevalent in science and engineering, a class of problems for which Peskin has made pioneering contributions. Using boundary integrals, we first reduce the fluid equations to an evolution equation solely for the immersed filament configuration. We then establish local well-posedness for this equation with initial data in low-regularity Hölder spaces. This is accomplished by first extracting the principal linear evolution by a small-scale decomposition and then establishing precise smoothing estimates on the nonlinear remainder. Higher regularity of these solutions is established via commutator estimates with error terms generated by an explicit class of integral kernels. Furthermore, we show that the set of equilibria consists of uniformly parametrized circles and prove nonlinear stability of these equilibria with explicit exponential decay estimates, the optimality of which we verify numerically. Finally, we identify a quantity that respects the symmetries of the problem and controls global-in-time behavior of the system. © 2018 Wiley Periodicals, Inc.  相似文献   

6.
We solve state observation problems for string vibrations, i.e., problems in which the initial conditions generating the observed string vibrations should be reconstructed from a given string state at two distinct time instants. The observed vibrations are described by the boundary value problem for the wave equation with homogeneous boundary conditions of the first kind. The observation problem is considered for classical and L 2-generalized solutions of this boundary value problem.  相似文献   

7.
We investigate nonlinear pseudodifferential equations with infinitely many derivatives. These are equations of a new class, and they originally appeared in p-adic string theory. Their investigation is of interest in mathematical physics and its applications, in particular, in string theory and cosmology. We undertake a systematic mathematical investigation of the properties of these equations and prove the main uniqueness theorem for the solution in an algebra of generalized functions. We discuss boundary problems for bounded solutions and prove the existence theorem for spatially homogeneous solutions for odd p. For even p, we prove the absence of a continuous nonnegative solution interpolating between two vacuums and indicate the possible existence of discontinuous solutions. We also consider the multidimensional equation and discuss soliton and q-brane solutions.  相似文献   

8.
We consider an initial boundary value problem for a non-linear differential system consisting of one equation of parabolic type coupled with a n × n semi-linear hyperbolic system of first order. This system of equations describes the compressible miscible displacement of n + 1 chemical species in a porous medium, in the absence of diffusion and dispersion. We assume the viscosity of the fluid mixture to be constant. We prove, in three space dimensions, the existence of a global weak solution with non-smooth initial data for the concentration. The proof is based on the artificial viscosity method together with a compensated compactness argument. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

9.
Three dimensional initial boundary value problem of the Navier-Stokes equation is considered. The equation is split in an Euler equation and a non-stationary Stokes equation within each time step. Unlike the conventional approach, we apply a non-homogeneous Stokes equation instead of homogeneous one. Under the hypothesis that the original problem possesses a smooth solution, the estimate of theH s+1 norm, 0≦s<3/2, of the approximate solutions and the order of theL 2 norm of the errors is obtained. This work was supported by the Science Foundation of Academia Sinica under grant (84)-103.  相似文献   

10.
The Neumann problem for the Stokes system is studied on bounded and unbounded domains with Ljapunov boundary (i.e. of class ${{\mathcal C}^{1,\alpha }}$ ) in the plane. We construct a solution of this problem in the form of appropriate potentials and reduce the problem to an integral equation systems on the boundary of the domain. We determine a necessary and sufficient condition for the solvability of the problem. Then we study the direct integral equation method and prove that a solution of the corresponding integral equation can be obtained by the successive approximation.  相似文献   

11.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

12.
We consider approximation by partial time steps of a smooth solution of the Navier-Stokes equations in a smooth domain in two or three space dimensions with no-slip boundary condition. For small k > 0, we alternate the solution for time k of the inviscid Euler equations, with tangential boundary condition, and the solution of the linear Stokes equations for time k, with the no-slip condition imposed. We show that this approximation remains bounded in H2,p and is accurate to order k in Lp for p > ∞. The principal difficulty is that the initial state for each Stokes step has tangential velocity at the boundary generated during the Euler step, and thus does not satisfy the boundary condition for the Stokes step. The validity of such a fractional step method or splitting is an underlying principle for some computational methods. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A symmetric N-string is a network of N ≥ 2 sections of string tied together at one common mobile extremity. In their equilibrium position, the sections of string form N angles of 2π/N at their junction point. Considering the initial and boundary value problem for small-amplitude oscillations perpendicular to the plane of the N-string at rest, we obtain conditions under which the solution will be periodic with an integral period.   相似文献   

14.
We consider a fully hyperbolic phase‐field model in this paper. Our model consists of a damped hyperbolic equation of second order with respect to the phase function χ(t) , which is coupled with a hyperbolic system of first order with respect to the relative temperature θ(t) and the heat flux vector q (t). We prove the well‐posedness of this system subject to homogeneous Neumann boundary condition and no‐heat flux boundary condition. Then, we show that this dynamical system is a dissipative one. Finally, using the celebrated ?ojasiewicz–Simon inequality and by constructing an auxiliary functional, we prove that the solution of this problem converges to an equilibrium as time goes to infinity. We also obtain an estimate of the decay rate to equilibrium. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We prove the existence of the very weak solution of the Dirichlet problem for the Navier—Stokes system with L 2 boundary data. Under the small data assumption we also prove the uniqueness. We use the penalization method to study the linearized problem and then apply Banach's fixed point theorem for the nonlinear problem with small boundary data. We extend our result to the case with no small data assumption by splitting the data on a large regular and small irregular part. Accepted 15 March 1999  相似文献   

16.
We study the unsteady rotary motion of a sphere immersed in a Stokes fluid. The equation of motion for the sphere leads to an integro-differential equation, and we are interested in the asymptotic behavior in time of the solution. Preparing initially the system (sphere + fluid) as a stationary state, we prove that the angular velocity of the sphere slows down with a law t −3/2 if no other forces than the one exerted by the fluid act on the sphere, while if the sphere is subject also to an elastic torque the asymptotic behavior of the angular position of the sphere is t γ , with γ = 5/2 if the initial angular velocity is zero, γ = 3/2 otherwise. This behavior is due to the memory effect of the surrounding fluid. We discuss briefly other initial preparations of the system.  相似文献   

17.
Summary. We construct some families of small amplitude periodic solutions close to a completely resonant equilibrium point of a semilinear reversible partial differential equation. To this end, we construct, using averaging methods, a suitable map from the configuration space to itself. We prove that to each nondegenerate zero of such a map there corresponds a family of small amplitude periodic solutions of the system. The proof is based on Lyapunov-Schmidt decomposition. This establishes a relation between Lyapunov-Schmidt decomposition and averaging theory that could be interesting in itself. As an application, we construct countable many families of periodic solutions of the nonlinear string equation u tt -u xx ± u 3 =0 (and of its perturbations) with Dirichlet boundary conditions. We also prove that the fundamental periods of solutions belonging to the n th family converge to 2π/n when the amplitude tends to zero. Received August 8, 2000; accepted November 21, 2000 Online publication February 26, 2001  相似文献   

18.
The Neumann problem for the Stokes system is studied on a domain in R 3 with Ljapunov bounded boundary. We construct a solution of this problem in the form of appropriate potentials and determine unknown source densities via integral equation systems on the boundary of the domain. The solution is given explicitly in the form of a series.  相似文献   

19.
We study the Navier–Stokes equations for nonhomogeneous incompressible fluids in a bounded domain Ω of R3. We first prove the existence and uniqueness of local classical solutions to the initial boundary value problem of linear Stokes equations and then we obtain the existence and uniqueness of local classical solutions to the Navier–Stokes equations with vacuum under the assumption that the data satisfies a natural compatibility condition.  相似文献   

20.
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5]. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号