首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of a diarylethene with a perfluorocyclohexene ring exhibit a remarkable photosalient effect upon UV light irradiation that is attributed to the structural changes that occur when going from open‐ to closed‐ring isomers in the crystalline state, together with the existence of two conformers with different photoconversions compared with those of a perfluorocyclopentene derivative. Our current results give a design principle for molecular structures so as to achieve the photosalient effect for photochromic crystals.  相似文献   

2.
3.
4.
An amphiphilic rectangular-shaped photochromic diarylethene bearing two hydrophobic alkyl chains and two hydrophilic tri(ethylene glycol) chains was synthesized, and its photoinduced morphological transformation in water was investigated. Two unexpected phenomena were revealed in the course of the experiments: a re-entrant photoinduced macroscopic morphological transformation and temperature-dependent kinetic products of supramolecular assembly. When the pure closed-ring isomer was dispersed in water, a re-entrant photoinduced morphological transformation, that is, a photoinduced transition from the hydrated phase to the dehydrated phase and then back to the hydrated phase, was observed by optical microscopy upon irradiation with green light at 20 °C; this was interpreted by the V-shaped phase diagram of the LCST transition. The aqueous assembly of the pure closed-ring isomer was controlled by changing the temperature; specifically, rapid cooling to 15 and 5 °C gave J and H aggregates, respectively, as the kinetic products. The thermodynamic product at both temperatures was a mixture of mostly H aggregate with a small amount of J aggregate. This behavior was rationalized by the temperature-dependent potential energy surface of the supramolecular assembly.  相似文献   

5.
6.
Diarylethene (DTE) has been widely used in fluorescence probes, molecular logic gates, optical data-storage devices owing to the excellent photochromic property, while constructing high-performance photochromic DTE in aqueous media remains a big challenge. Herein we present several host-guest systems formed between cucurbit[n]uril (CB[n], n=7, 8, 10) and two water-soluble DTE derivatives 1 and 2 . It was found that host-guest interactions not only affect the photophysical properties of photochromic guests, but also make great differences on the photoreaction process. Different host-guest binding behaviors also lead to different effects on the photochromic properties of guests. In the presence of CB[n], both 1 and 2 showed enhanced emission and higher fluorescence quenching ratio at photostationary state. Besides, CB[10] ⋅1 exhibited faster response rate in cyclization reaction and better photofatigue resistance than free 1 in aqueous solution, while the supramolecular assembly of (CB[8])n ⋅ ( 2 )n showed slower response rate in both directions of the reversible photoreaction. Besides, the photofatigue resistance of 2 can be greatly improved through binding with CB[7]. Our results suggest that host-guest interactions could be an efficient way to improve photochromic properties of DTE in aqueous solution.  相似文献   

7.
Reaction of Zn(NO3)2 ⋅ 6H2O, maleic acid (H2mal) and trans-4-(1-naphthylvinyl)pyridine (trans-nvp) in the dark results in the formation of a one-dimensional coordination polymer (1D CP) [Zn(mal)(trans-nvp)] ( 1 ), which is photosalient in nature. The crystals of 1 pop violently under UV light and moderately in sunlight, and generate cyclobutane ligands. However, the same reaction mixture kept in visible light exhibits the rare example of in situ isomerization of both ligands: cis-trans transformation of maleate and trans-cis isomerization of the nvp ligands, and subsequent formation of another 1D CP [Zn(fum)(cis-nvp)2(H2O)2] ( 2 , H2fum=fumaric acid), which is found to be photoinert. Thus, altering the reaction condition from dark to visible light gives rise to photosalient to photoinert crystals.  相似文献   

8.
The extremely rare examples of dynamic single crystals where excitation by light or heat induces macroscopic motility present not only a visually appealing demonstration of the utility of molecular materials for conversion of energy to work, but they also provide a unique opportunity to explore the mechanistic link between collective molecular processes and their consequences at a macroscopic level. Here, we report the first example of a photosalient effect (photoinduced leaping) observed with crystals of three coordination complexes which is induced by a [2+2] photocycloaddition reaction. Unlike a plethora of other dimerization reactions, when exposed to even weak UV light, single crystals of these materials burst violently, whereby they are propelled to travel several millimeters. The results point to a multistep mechanism where the strain energy that has been accumulated during the dimerization triggers a rapid structure transformation which ultimately results in crystal disintegration.  相似文献   

9.
10.
11.
A diarylethene with a perfluorocyclohexene ring formed hollow crystals by sublimation under normal pressure. Upon UV irradiation of the crystals, they showed remarkable photosalient phenomena and scattered into small pieces. The speed of the flying debris released from the crystal by UV irradiation exceeded several meters per second. To clearly show a photosalient effect resembling the scattering behavior of Impatiens on a smaller scale, small fluorescent beads (1‐μm diameter) were inserted into the hollow crystal. Consequently, scattering of the beads was observed as UV irradiation caused deformation and bursting of the hollow structure. This phenomenon is unique to hollow crystals, and the ability to effectively induce remarkable photosalient phenomena is similar to the behavior of hollow‐structured Impatiens in nature.  相似文献   

12.
A photochromic diarylethene,1,2-bis(2-methyl-5-(4-N,N-dimethylaminophenyl)thien-3-yl)perfluorocyclopen-tene in proton-donating media was studied.The ammonium salt came into being in the presence of acetic acidfollowing localization of lone pair electrons of the amino group.The maximum absorption of the salt had a 36 nmhypsochromic shift,and its molar extinction coefficient increased to 3.494×10~4 L·mol~(-1)·cm~(-1).The conjugationaland delocalizational energy levels were calculated by Gaussian 98,and its hypsochromic shift mechanism was alsodiscussed.  相似文献   

13.
A series of “turn‐on” fluorescence diarylethenes derived from 2,3‐bis(2‐methylbenzo[b]thiophen‐3‐yl)‐5,6‐dihydro‐4H‐thieno[2,3‐b]thiopyran‐4‐one ( 1 ) with alkyl and acetyl substituents were synthesized. The photochemical and photophysical properties of these derivatives, including the photoreaction of crystalline 1 , were thoroughly investigated to reveal substituent effects on their properties. The results indicated that alkyl substituents did not significantly affect the absorption and emission spectra of the diarylethenes. However, large absorption and emission wavelength shifts were observed for the diarylethene with an acetyl substituent due to extension of π–π conjugation. Significantly, all of the fluorescent ring‐closed forms of the compounds isomerized to their ring‐open forms in the presence of Cu2+ in the dark. EPR results provide clear evidence for the formation of the compound 1 radical cation intermediate that might be generated in the reaction between c‐ 1 and Cu2+. DFT calculations found that the ground‐state activation energy for ring‐opening of 1.+ was approximately 9.2 kcal mol?1 lower than that of 1 without Cu2+, such that a Cu2+‐catalyzed oxidative cycloreversion reaction at room temperature might be possible.  相似文献   

14.
Five diarylethene photochromic derivatives, the structures of which incorporate a central benzothiophene unit, a left‐hand thiazole group, and a right‐hand benzothiophene group, have been prepared. The compound with a thiazole unit with no substituent on the reaction‐center carbon atom reveals an unprecedented transformation upon light irradiation. When the 4‐position of thiazole is protected by a methyl group, the compounds show high photosensitivity and photochromic properties. In this case, light irradiation affords new compounds with [5]helicene structures featuring the highest redshifted absorption maxima reported to date.  相似文献   

15.
Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well‐defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well‐defined helical nanofibers featuring J‐type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self‐assembly pathway by means of photocontrol.  相似文献   

16.
17.
18.
Resonance energy transfer from two-photon absorbing fluorene derivatives to the photochromic compound 3,4-bis-(2,4,5-trimethyl-thiophen-3-yl)furan-2,5-dione (PC 1) is investigated in hexane under one- and two-photon excitation. The quenching of the steady-state fluorescence of donor molecules in the presence of the diarylethene acceptor is used to study the nature of resonance energy transfer. The F?rster distances and critical acceptor concentrations are determined for nonbound donor-acceptor pairs in homogeneous molecular ensembles. Quite significantly, up to a two-fold enhancement in the velocity of the photochromic transformation of 1, in the presence of two-photon absorbing fluorene derivatives, is demonstrated.  相似文献   

19.
Diarylethenes possess unique structural properties, which enabled them to find widespread applications in the field of photochromism. Nowadays, bisthienylcyclopentenes (BTCs) present the most popular subfamily of these compounds, which are widely used as P‐type chromophores. This minireview summarises the main strategies for the synthesis of symmetrical and nonsymmetrical BTCs. In addition, attention is drawn to desymmetrisations achieved by monosubstitutions, which is not frequently utilised, although it can be highly advantageous. This is supported with some of the authors’ latest results.  相似文献   

20.
The realization of technologically relevant functional systems from idealized photochromic compounds remains elusive due to the double requirement that such switches must possess both highly efficient photo‐isomerization reactivity and extremely low fatigue over a large number of switching cycles. Nowadays, improvements of the switching properties in complex diarylethene structures are mainly attained on a “trial and error” basis through chemical substitutions aimed at tuning the chemical properties of the core of the diarylethene. Therefore, we present new guiding principles to analyze the first excited state reactivity of diarylethenes based on the quantum theory of atoms in molecules (QTAIM) including the stress tensor. This approach straightforwardly provides consistent theoretical justification to partner the already successful symmetric substitution patterns obtained from experiments. The guiding principles provided by QTAIM and stress tensor suggest more complex asymmetric patterns should be included for the systematic design of new technologically relevant functional compounds. The stress tensor trajectory Tσ(s) analysis is used to characterize the photochromism reaction as reusable and the fatigue reaction as irreversible and find candidate sites for alteration by future experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号