首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of metal-metal quadruply bonded compounds [(tBuCO2)3M2]2(mu-TT) where TT = thienothiophenedicarboxylate and M = Mo, 1A, and M = W, 1B and [(tBuCO2)3M2]2(mu-DTT) where DTT = dithienothiophenedicarboxylate and M = Mo, 2A, and M = W, 2B, has been prepared and characterized by elemental analysis, ESI- and MALDI-TOF mass spectrometry and 1H NMR spectroscopy. Their photophysical properties have also been investigated by steady-state absorption as well as transient absorption and emission spectroscopy. The optimized structures and the predicted low energy electronic transitions were obtained by DFT and time-dependent DFT calculations, respectively, on model compounds. These results, in combination with the respective properties of the compounds [(tBuCO2)3M2]2(mu-BTh) (BTh = 2,5'-bithienyldicarboxylate, M = Mo, 3A, and M = W, 3B), allow us to make a comprehensive comparison of the fused (compounds 1A, 1B, 2A, and 2B) and the nonfused thienyl (compounds 3A and 3B) dicarboxylate bridged compounds of molybdenum and tungsten. The electrochemical studies show singly oxidized radical cations that are valence trapped on the EPR time-scale and are classified as Class 1 (M = Mo) or Class 2 (M = W) on the Robin and Day scale for mixed valence compounds. The new compounds exhibit intense metal to bridge ligand charge transfer absorption bands in the far visible and near IR (NIR) region. Both molybdenum and tungsten complexes show dual emission, but for molybdenum, the phosphorescence is dominant while for tungsten the emission is primarily fluorescence. Femtosecond transient absorption spectroscopy shows that the relaxation dynamics of the S1 states which have lifetimes of approximately 10 ps is dominated by intersystem crossing (ISC), leading to T1 states that in turn possess long lifetimes, approximately 70 micros (M = Mo) or 3 micros (M = W). These properties are contrasted with the photophysical properties of conjugated organic systems incorporating metal ions of the later transition elements.  相似文献   

2.
The boron dipyrromethene (BODIPY) triads consisting of two triphenylamine units as electron donor (D) and BODIPY core as electron acceptor (A; B3 , and B4 ) have been synthesized using facile palladium cross‐coupling reactions to broaden the absorption of the BODIPY dyes. All dyes and intermediates were characterized by 1H NMR, 11B NMR, 13C NMR, and 19F NMR spectroscopies, UV–Vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and time‐dependent density functional theory calculations. It was found that an increase in conjugation to the BODIPY core systematically extended the absorption and emission wavelength maxima. As a consequence, B4 containing the D–π–A–π–D structure, exhibited the longest absorption and emission maxima at 597 and 700 nm, respectively, with 1.8 eV in optical bandgap. The 96 nm red‐shifted absorption of B4 as compared to the unsubstituted BODIPY ( B1 ) indicated the effective electronic communication between triphenylamine and BODIPY. This suggested that the proper alignment of triphenylamine and BODIPY triad could lead to broader absorption and suitable low energy bandgap. Furthermore, the molecular modeling has been employed to analyze the electronic and optical properties of the dyes. We found that the optical, electrochemical, and theoretical bandgaps of all dyes were in good agreement.  相似文献   

3.
Phenoxy- and naphthoxy-substituted bisphenol-bridged cyclic phosphazenes were synthesized in 2 steps and their thermal, photophysical, and electrochemical properties were investigated. The structures of the cyclic phosphazene compounds were determined by ESI-MS mass spectrometry and 1 H, 13 C, and 31 P NMR spectroscopies. The photophysical studies of phenoxy- and naphthoxy-substituted bridged cyclophosphazenes were investigated by means of absorption and fluorescence spectroscopies in different solvents. Thermal and electrochemical properties of the target compounds were also studied. Furthermore, the excimer emissions through intramolecular interactions in solution and in solid state were investigated by fluorescence spectroscopy and the theoretical calculations were performed in detail using DFT.  相似文献   

4.
The redox behavior of Sc 3N@C 68 is studied systematically by means of electrochemistry, in situ ESR/Vis-NIR spectroelectrochemistry, and detailed theoretical treatment. Formation of the negatively and positively charged paramagnetic species for the same trimetallic nitride endohedral fullerene is demonstrated for the first time. The electrochemical study of Sc 3N@C 68 exhibits two electrochemically irreversible but chemically reversible reduction steps and two reversible oxidation steps. A double-square reaction scheme is proposed to explain the observed redox reaction at cathodic potentials involving the reversible dimerisation of the Sc 3N@C 68 monoanion. The spin state of the radical cation and the radical anion is probed by ESR spectroscopy, indicating that in both states, the large part of the unpaired spin is delocalized on the fullerene cage. The charged states of the non-isolated pentagon rule fullerene are characterized furthermore by in situ absorption spectroscopy. The interpretation of experimental data is supported by the density functional theory (DFT) calculations of the spin distribution in the anion and cation radicals of Sc 3N@C 68 and time-dependent DFT calculations of the absorption spectra of the charged species.  相似文献   

5.
The first examples of β–β directly linked, acetylene‐bridged, and butadiyne‐bridged 5,15‐diazaporphyrin dimers have been prepared by palladium‐catalyzed coupling reactions of nickel(II) and copper(II) complexes of 3‐bromo‐10,20‐dimesityl‐5,15‐diazaporphyrin (mesityl=2,4,6‐trimethylphenyl). The effects of the linking modes and meso‐nitrogen atoms on the structural, optical, electrochemical, and magnetic properties of the distributed π systems were investigated by using X‐ray crystallography, UV/Vis absorption spectroscopy, DFT calculations, cyclic voltammetry, and ESR spectroscopy. Both the electronic and steric effects of the meso‐nitrogen atoms play an important role in the highly coplanar geometry of the directly linked dimers. The direct β–β linkage produces enhanced π conjugation and electron‐spin coupling between the two diazaporphyrin units.  相似文献   

6.
A new series of intramolecular charge transfer (ICT) molecules were synthesized by attaching various strong electron-withdrawing groups to a triphenylamine backbone. Relationships between chemical structures and optoelectronic properties of these compounds were investigated with X-ray diffraction, cyclic voltammetry, absorption spectroscopy, and density functional theory calculations. It is shown that the compounds exhibit intensive ICT interactions leading to substantial extension of their absorption spectral response, which may be potentially used for efficient solar cells.  相似文献   

7.
The electronic structure and optical properties of 13 chelating heteroatomic conjugated molecules such as pyridine, benzoxazole, and benzothiazole derivatives, which are used as C–N ligands in organometallic compounds, have been investigated. The geometries of the ground and first excited states were obtained by the DFT and CIS methods, respectively, followed by the SAC-CI calculations of the transition energies for absorption and emission. For six compounds whose experimental data are available, the SAC-CI calculations reproduced the experimental values satisfactorily with deviations of less than 0.3 eV for absorption and 0.1 eV for emission except for benzoxazoles. For other molecules, the theoretical absorption and emission spectra were predicted. The lowest ππ* excited-state geometries was calculated to be planar for most of the molecules with two or three conjugated rings connected by single bond. The geometry change due to the ππ* excitation was qualitatively interpreted by electrostatic force theory based on SAC/SAC-CI electron density difference. The excitations are relatively localized in the central region and in the lowest ππ* excited state, the inter-ring single bond shows large change, with a contraction of 0.05–0.09 Å. The present calculations provide reliable information regarding the energy levels of these chelating heteroatomic conjugated compounds.  相似文献   

8.
Trianionic spin-quartet and tetraanionic spin-quintet molecular clusters derived from m-dibenzoylbenzene in solution were identified by CW-ESR/pulse-ESR based two-dimensional electron spin transient nutation spectroscopy, and their spin and clustering structures in the ground state were determined in terms of a D-tensor based phenomenological approach and DFT calculations. The molecular structures obtained semiempirically are supported by DFT-based quantum chemical calculations. The DFT calculations have been tested for a sodium ion bridged fluorenone-based cluster, [fluorenone(-)˙ {Na(+)(dme)(2)}](2), whose crystal structure was reported in the literature [H. Bock, H.-F. Herrmann, D. Fenske and H. Goesmann, Angew. Chem., Int. Ed. Engl., 1988, 27, 1067], reproducing the experimentally determined moelcular structure of the dimer cluster. It is suggested that both the quartet and quintet clusters in the 2-MTHF glass and solution form the cross-typed structures with the two m-dibenzoylbenzene moieties in cis-configuration. A dianionic spin-triplet m-dibenzoylbenzene derivative was detected for the first time and its charge and spin densities were studied by the quantum chemical calculations. The high-spin states of the open-shell entities under study were confirmed by X-band pulse-ESR based electron spin nutation spectroscopy in organic frozen glasses. The D values and other spin Hamiltonian parameters of all the polyanionic high-spin species were determined by the hybrid eigenfield spectral simulation for fine-structure ESR spectra. m-Dibenzoylbenzene provides pseudo-degenerate π-LUMOs arising from its topological symmetry of the π-electron network and its dianion in the triplet ground state is a prototypical model for topologically-controlled genuinely organic ferromagnetic metals.  相似文献   

9.
Four new triphenylamine ligands with different substituents in the para position and their corresponding copper(II) complexes are reported. This study includes their structural, spectroscopic, magnetic, and electrochemical properties. The complexes possess a dinuclear copper(II) paddle-wheel core, a building unit that is also common in metal-organic frameworks. Electrochemical measurements demonstrate that the triphenylamine ligands and the corresponding complexes are susceptible to oxidation, resulting in the formation of stable radical cations. The square-wave voltammograms observed for the complexes are similar to those of the ligands, except for a slight shift in potential. Square-wave voltammetry data show that, in the complexes, these oxidations can be described as individual one-electron processes centered on the coordinated ligands. Spectroelectrochemistry reveals that, during the oxidation of the complexes, no difference can be detected for the spectra of successively oxidized species. For the absorption bands of the oxidized species of the ligands and complexes, only a slight shift is observed. ESR spectra for the chemically oxidized complexes indicate ligand-centered radicals. The copper ions of the paddle-wheel core are strongly antiferromagnetic coupled. DFT calculations for the fully oxidized complexes indicate a very weak ferromagnetic coupling between the copper ions and the ligand radicals, whereas a very weak antiferromagnetic coupling is found among the ligand radicals.  相似文献   

10.
π‐Extended silafluorenes and spirobisilafluorenes bearing electron‐donating aminostyryl substituents at the 2,7‐ or 3,6‐positions were synthesized by a Horner–Wadsworth–Emmons reaction. The electronic influence of spirocyclic structure and substitution mode of the aminostyryl substituents was investigated by UV/Vis spectroscopy, which indicated the existence of a spiroconjugation effect in the 3,6‐substituted spirobisilafluorene. They exhibited moderate to strong fluorescence emission, and the fluorescence properties were compatible with the UV/Vis absorption characteristics, except for the 3,6‐substituted spirobisilafluorene, which showed relatively large enhancement of fluorescence quantum yield and Stokes shift. The influence of the spirocyclic structure and substitution mode on the photophysical properties of the silicon compounds was investigated by DFT calculations.  相似文献   

11.
Determination of electron spin multiplicities of transition-metal radicals and ions challenges both experimentalists and theoreticians. In this work, we report preferred electron spin states of M[C(6)(CH(3))(6)] and M(+)(C(6)(CH(3))(6)], where M = Ti, V, and Co. The neutral radicals were formed in a supersonic metal cluster beam source, and their masses were measured with time-of-flight mass spectrometry. Precise ionization energies of the radicals and metal-ligand stretching frequencies of the ions were measured by pulsed field ionization zero electron kinetic energy spectroscopy. C-H stretching frequencies of the methyl group in the radicals were obtained by infrared-ultraviolet two-photon ionization. Electron spin multiplicities of the radicals and ions were investigated by combining the spectroscopic measurements, density functional theory, and Franck-Condon factor calculations. The preferred spin states are quintet, sextet, and quartet for the neutral Ti, V, and Co radicals, respectively; for the corresponding singly charged cations, they are quartet, quintet, and triplet. In these high-spin states, the aromatic ring remains nearly planar. This finding contrasts to the previous study of Sc(hmbz), for which low-spin states are favored, and the aromatic ring is severely bent.  相似文献   

12.
It has been proved that triphenylamine (TPA) derivatives can be excellent candidates for hole‐transporting materials in organic light‐emitting diodes (OLEDs). To improve on the thermal and morphological stability, a fully diarymethylene‐bridged TPA derivative (FATPA) which has been proven to enhance electroluminescent (EL) efficiency was synthesized. On the basis of FATPA, two series of novel bridged TPA derivatives have been designed by using diarylmethylene (Series A) or dimethyfluorene (Series B) as the linkage between the ortho‐positions of the phenyl rings in this work (see Fig. 1 ). To reveal the relationships between electronic structures and photophysical properties of these novel functional materials, an in‐depth theoretical investigation was elaborated via quantum chemical calculations using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods. In addition, the feasibility of using these bridged TPA derivatives as host in the device of ITO/MoO3/NPB/mCP/host:Ir(ppy)3/TAZ/LiF/Al was also evaluated, which including the discussion to their energy levels match with adjacent layers and energy transfer from host to guest. These calculated results show that photophysical properties can be easily tuned by the introduction of various substituent groups into the bridged TPA derivatives, such as the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), the energies difference between the HOMOs and LUMOs (ΔH‐L), the lowest singlet (ES) and triplet (ET) excitation energies, ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ) and the absorption and emission spectra, indicating that these bridged TPA derivatives have great potential applications for OLEDs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

13.
Benzimidazole‐branched bi‐anchoring organic dyes that contained triphenylamine/phenothiazine donors, 2‐cyanoacrylic acid acceptors, and various π linkers were synthesized and examined as sensitizers for dye‐sensitized solar cells. The structure–activity relationships in these dyes were systematically investigated by using absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The wavelength of the absorption peak was more‐heavily influenced by the nature of the π linker than by the nature of the donor. For a given donor, the absorption maximum (λmax) was red‐shifted on changing the π linker from phenyl to 2,2′‐bithiophene, whilst the dyes that contained triphenylamine units displayed higher molar extinction coefficients (?) than their analogous phenothiazine‐based triphenylamine dyes, which led to good light‐harvesting properties in the triphenylamine‐based dyes. Electrochemical data for the dyes indicated that the triphenylamine‐based dyes possessed relatively low‐lying HOMOs, which could be beneficial for suppressing back electron transfer from the conduction band of TiO2 to the oxidized dyes, owing to facile regeneration of the oxidized dye by the electrolyte. The best performance in the DSSCs was observed for a dye that possessed a triphenylamine donor and 2,2′‐bithiophene π linkers. Electron impedance spectroscopy (EIS) studies revealed that the use of triphenylamine as the donor and phenyl or 2,2′‐bithiophene as the π linkers was beneficial for disrupting the dark current and charge‐recombination kinetics, which led to a long electron lifetime of the injected electrons in the conduction band of TiO2.  相似文献   

14.
This review provides an overview of density functional theory (DFT) calculations in a consequence with spectroelectrochemical measurements on mononuclear and symmetrically or unsymmetrically bridged di- and tetranuclear ruthenium complexes of vinyl and TCNX ligands. The DFT approach is used for the calculations of molecular structures, vibrational frequencies, electronic and electron paramagnetic resonance (EPR) spectral data. DFT calculations enable us to identity the primary redox site and the electron and spin-density distribution between the individual components for the individual redox congeners. The DFT technique reproduces the spectral properties of the presented complexes and their radical ions. The generally close correspondence between experimental and quantum chemical results demonstrate that modern DFT is a powerful tool to address issues like ligand non-innocence and electron and spin delocalization in systems containing both redox-active metal ions and redox-active ligands.  相似文献   

15.
Radical anions of a diphosphene with two boryl substituents were isolated and characterized by single‐crystal X‐ray diffraction, electron spin resonance (ESR), and UV/Vis absorption spectroscopy as well as DFT calculations. Structural analysis of the radical anions revealed an elongation of the P=P bond and a contraction of the B−P bonds relative to the neutral diphosphene. The UV/Vis spectra of these radical anions showed a strong absorption in the visible region, which was assigned to SOMO‐related transitions on the basis of DFT calculations. The ESR spectra revealed that the hyperfine coupling constant with the phosphorus nuclei is the smallest that has been reported thus far. The results of the DFT calculations furthermore suggest that this should be attributed to a soaking of electron spin to the vacant p orbitals of the boryl substituents.  相似文献   

16.
The mono- (1) and dinuclear (2) ruthenium(II) bis(2,2'-bipyridine) complexes of 2,5-di(pyridin-2-yl)pyrazine (2,5-dpp), for which the UV/Vis absorption and emission as well as electrochemical properties have been described earlier, are reinvestigated here by resonance, surface enhanced and transient resonance Raman spectroscopy together with selective deuteration to determine the location of the lowest lying excited metal to ligand charge transfer ((3)MLCT) states. The ground state absorption spectrum of both the mono- and dinuclear complexes are characterised by resonance Raman spectroscopy. The effect of deuteration on emission lifetimes together with the absence of characteristic bipy anion radical modes in the transient Raman spectra for both the mono- and dinuclear complexes bridged by the 2,5-dpp ligand confirms that the excited state is 2,5-dpp based; however DFT calculations and the effect of deuteration on emission lifetimes indicate that the bipy based MLCT states contribute to excited state deactivation. Resonance Raman and surface enhanced Raman spectroscopic (SERS) data for 1 and 2 are compared with that of the heterobimetallic complexes [Ru(bipy)(2)(2,5-dpp)PdCl(2)](2+)3 and [Ru(bipy)(2)(2,5-dpp)PtCl(2)](2+)4. The SERS data for 1 indicates that a heterobimetallic Ru-Au complex forms in situ upon addition of 1 to a gold colloid.  相似文献   

17.
The electronic properties of four divinylanthracene‐bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ? CH?CHArCH?CH)] (Ar=9,10‐anthracene ( 1 ), 1,5‐anthracene ( 2 ), 2,6‐anthracene ( 3 ), 1,8‐anthracene ( 4 )) obtained by molecular spectroscopic methods (IR, UV/Vis/near‐IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C?O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1 , except oxidized 1+ , the electronic absorption spectra of complexes 2+ , 3+ , and 4+ all display the characteristic near‐IR band envelopes that have been deconvoluted into three Gaussian sub‐bands. Two of the sub‐bands belong mainly to metal‐to‐ligand charge‐transfer (MLCT) transitions according to results from time‐dependent DFT calculations. EPR spectroscopy of chemically generated 1+ – 4+ proves largely ligand‐centered spin density, again in accordance with IR spectra and DFT calculations results.  相似文献   

18.
Persistent organic radicals have gained considerable attention in the fields of catalysis and materials science. In particular, helical molecules are of great interest for the development and application of novel organic radicals in optoelectronic and spintronic materials. Here we report the syntheses of easily tunable and stable neutral quinolinoacridine radicals under anaerobic conditions by chemical reduction of their quinolinoacridinium cation analogs. The structures of these [4]helicene radicals were determined by X-ray crystallography. Density functional theory (DFT) calculations, supported by electron paramagnetic resonance (EPR) measurements, indicate that over 40% of spin density is located at the central carbon of our [4]helicene radicals regardless of their structural modifications. The localization of the charge promotes a reversible oxidation to the cation upon exposure to air. This unusual reactivity toward molecular oxygen was monitored via UV-Vis spectroscopy.

We report a series of tunable and persistent [4]-helicene neutral radicals by chemical reduction of the [4]-helicenium cation analogue. EPR spectroscopy and DFT calculations indicate that the unpaired electron is localized at the central carbon atom.  相似文献   

19.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

20.
The spectroscopic properties of two asymmetric indolylmaleimide derivatives, 4-bromo-3-(1'H-indol-3'-yl)maleimide and 4-methyl-3-(1'H-indol-3'-yl)maleimide, are investigated. The bromo derivative was crystallized and its X-ray structure was determined. Both compounds are strongly colored while their separate components (indole and maleimide) absorb in the UV region only. To understand the ground- and excited-state behavior, the photophysical properties of the two compounds were studied in detail by steady state and time-resolved absorption and emission spectroscopy. Their solvatochromic behavior was investigated by using the Kamlet-Taft approach, which indicates some charge transfer (CT) character in the excited state. Nano- and femtosecond transient absorption spectroscopy was used for the identification and investigation of the CT state. Furthermore, the effect of the complexation with zinc(II) 1,4,7,11-tetraazacyclododecane (Zn-cyclen) on the photophysical properties of these two compounds was studied. An enhancement of the fluorescence intensity upon self-assembly (up to 90 times) and high association constants were observed, which illustrate the potential use of these compounds as luminescent sensors. DFT calculations indicate that HOMO-1 to LUMO excitation is mainly responsible for the charge transfer character and that this transition changes its character drastically when Zn-cyclen complexation occurs, thus giving it sensor properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号