首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atomic/molecular layer deposition (ALD/MLD) technique provides an elegant way to grow crystalline metal–azobenzene thin films directly from gaseous precursors; the photoactive azobenzene linkers thus form an integral part of the crystal framework. Reversible water capture/release behavior for these thin films can be triggered through the transcis photoisomerization reaction of the azobenzene moieties in the structure. The ALD/MLD approach could open up new horizons for example, for the emerging fields of remotely controlled drug delivery and gas storage.  相似文献   

2.
Two new atomic/molecular layer deposition processes for depositing crystalline metal-organic thin films, built from 1,4-benzenedisulfonate (BDS) as the organic linker and Cu or Li as the metal node, are reported. The processes yield in-situ crystalline but hydrated Cu-BDS and Li-BDS films; in the former case, the crystal structure is of a previously known metal-organic-framework-like structure, while in the latter case not known from previous studies. Both hydrated materials can be readily dried to obtain the crystalline unhydrated phases. The stability and the ionic conductivity of the unhydrated Li-BDS films were characterized to assess their applicability as a thin film solid polymer Li-ion conductor.  相似文献   

3.
Curcumin is known as a biologically active compound and a possible antimicrobial agent. Here, we combine it with TiO2 and ZnO semiconductors, known for their photocatalytic properties, with an eye towards synergistic photo-harvesting and/or antimicrobial effects. We deposit different nanoscale multi-layer structures of curcumin, TiO2 and ZnO, by combining the solution-based spin-coating (S-C) technique and the gas-phase atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques. As one of the highlights, we demonstrate for these multi-layer structures a red-shift in the absorbance maximum and an expansion of the absorbance edge as far as the longest visible wavelength region, which activates them for the visible light harvesting. The novel fabrication approaches introduced here should be compatible with, e.g., textile substrates, opening up new horizons for novel applications such as new types of protective masks with thin conformal antimicrobial coatings.  相似文献   

4.
Cu and Ag precursors that are volatile, reactive, and thermally stable are currently of high interest for their application in atomic-layer deposition (ALD) of thin metal films. In pursuit of new precursors for coinage metals, namely Cu and Ag, a series of new N-heterocyclic carbene (NHC)-based CuI and AgI complexes were synthesized. Modifications in the substitution pattern of diketonate-based anionic backbones led to five monomeric Cu complexes and four closely related Ag complexes with the general formula [M(tBuNHC)(R)] (M=Cu, Ag; tBuNHC=1,3-di-tert-butyl-imidazolin-2-ylidene; R=diketonate). Thermal analysis indicated that most of the Cu complexes are thermally stable and volatile compared to the more fragile Ag analogs. One of the promising Cu precursors was evaluated for the ALD of nanoparticulate Cu metal deposits by using hydroquinone as the reducing agent at appreciably low deposition temperatures (145–160 °C). This study highlights the considerable impact of the employed ligand sphere on the structural and thermal properties of metal complexes that are relevant for vapor-phase processing of thin films.  相似文献   

5.
We report a new layer-by-layer growth method of self-assembled organic multilayer thin films based on gas-phase reactions. In the present molecular layer deposition (MLD) process, alkylsiloxane self-assembled multilayers (SAMs) were grown under vacuum by repeated sequential adsorptions of C=C-terminated alkylsilane and titanium hydroxide. The MLD method is a self- limiting layer-by-layer growth process, and is perfectly compatible with the atomic layer deposition (ALD) method. The SAMs films prepared exhibited good thermal and mechanical stability, and various unique electrical properties. The MLD method, combined with ALD, was applied to the preparation of organic-inorganic hybrid nanolaminate films in the ALD chamber. The organic-inorganic hybrid superlattices were then used as active mediums for two-terminal electrical bistable devices. The advantages of the MLD method with ALD include accurate control of film thickness, large-scale uniformity, highly conformal layering, sharp interfaces, and a vast library of possible materials. The MLD method with ALD is an ideal fabrication technique for various organic-inorganic hybrid superlattices.  相似文献   

6.
Encapsulation methods have shown to be effective in imparting improved stability to metal-halide perovskite nanocrystals (NCs). Atomic layer deposition (ALD) of metal oxides is one of the promising approaches for such encapsulation, yet better control on the process parameters are required to achieve viable lifetimes for several optoelectronic and photocatalytic applications. Herein, we optimize the ALD process of amorphous aluminum oxide (AlOx) as an encapsulating layer for CsPbBr3 NC thin films by using oxygen (O2) as a molecular diffusion probe to assess the uniformity of the deposited AlOx layer. When O2 reaches the NC surface, it extracts the photogenerated electrons, thus quenching the PL of the CsPbBr3 NCs. As the quality of the ALD layer improves, less quenching is expected. We compare three different ALD deposition modes. We find that the low temperature/high temperature and the exposure modes improve the quality of the alumina as a gas barrier when compared with the low temperature mode. We attribute this result to a better diffusion of the ALD precursor throughout the NC film. We propose the low temperature/high temperature as the most suitable mode for future implementation of multilayered coatings.  相似文献   

7.
采用原子层沉积技术(ALD)在不锈钢微通道管式反应器内壁沉积二氧化硅(SiO2)和二氧化钛(TiO2)薄膜, 以抑制碳氢燃料热裂解过程中由于金属催化作用导致的结焦. 使用石英晶体微天平(QCM)测得SiO2和TiO2薄膜的生长速率分别为0.15 nm/周期和0.11 nm/周期, 因此可以通过改变沉积周期数精确控制钝化层的厚度. 在结焦实验中, 当钝化膜层较薄时, 其抗积碳钝化作用较弱; 随着钝化薄膜厚度的增加, 其钝化作用逐渐增强, 微通道反应器的运行寿命显著延长. 实验表明, TiO2薄膜的抗积碳钝化性能普遍优于SiO2薄膜. 沉积周期数为1000的TiO2膜层具有最佳的抗积碳钝化效果, 能够使反应器的运行时间延长4~5倍.  相似文献   

8.
Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures.  相似文献   

9.
The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal–organic frame‐works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF–nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide‐6 nanofibers enable the formation of conformal Zr‐based MOF thin films including UiO‐66, UiO‐66‐NH2, and UiO‐67. Cross‐sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF‐functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half‐lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF–nanofiber textile composites capable of ultra‐fast degradation of CWAs.  相似文献   

10.
Abstract

Atomic layer deposition (ALD) is a vapor-phase technique capable of producing inorganic thin films with precise control over the thickness of the film. The ALD method offers high precision in the design of advanced 3D nanostructures. In this article, silica and alumina thin films have been grown over fibers of cellulose by the ALD process. The morphology and the chemical composition of the fabricated thin films are characterized, as well as their thermal durability through elevated temperatures. Moreover, XPS is used to confirm the phases of the alumina nanofilms and to further understand the deposition process on the cellulose microfibers.  相似文献   

11.
We report on the effect of aging on the mechanical properties of molecular layer–deposited (MLD) thin films. We studied the mechanical failure of the films during uniaxial tensile testing and observed a sixfold difference in the crack-onset strain (COS) and related flexibility within the first two days after the samples were exposed to ambient air. The MLD films made using trimethylaluminum and ethylene glycol are notorious for exhibiting structural changes after the fabrication; we show that these changes are detrimental for mechanical robustness of the films. This information aids to plan the handling or the protection of these films to achieve better performance with these materials. The interfacial shear strains and COSs of the shortly air-exposed 300-nm-thick films were observed to be roughly 0.3% and 1.8%, respectively. These values are the highest reported so far for hybrid organic–inorganic MLD thin films and would extrapolate to about 14% COS for 5-nm-thick film, indicating potential applications as interfacial adhesion layer for films on polymer substrates and as a protective coating in battery applications.  相似文献   

12.
Manganese oxide (MnOx) shows great potential in the areas of nano-electronics, magnetic devices and so on. Since the characteristics of precise thickness control at the atomic level and self-align lateral patterning, area-selective deposition (ASD) of the MnOx films can be used in some key steps of nanomanufacturing. In this work, MnOx films are deposited on Pt, Cu and SiO2 substrates using Mn(EtCp)2 and H2O over a temperature range of 80–215 °C. Inherently area-selective atomic layer deposition (ALD) of MnOx is successfully achieved on metal/SiO2 patterns. The selectivity improves with increasing deposition temperature within the ALD window. Moreover, it is demonstrated that with the decrease of electronegativity differences between M (M = Si, Cu and Pt) and O, the chemisorption energy barrier decreases, which affects the initial nucleation rate. The inherent ASD aroused by the electronegativity differences shows a possible method for further development and prediction of ASD processes.  相似文献   

13.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

14.
By combining atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques, the latter being a variant of the former in which organic precursors are used, it is possible to deposit thin films containing precisely controlled portions of inorganic and organic constituents. This in turn enables the adjustment of material properties by changing the number of ALD and MLD cycles applied during the deposition. In this work, the properties of such thin-film "alloys" prepared by varying the portions of Ti-4,4'-oxydianiline (Ti-ODA) inorganic-organic hybrid and TiO(2) in the structure were investigated. The films were deposited at 280 °C using TiCl(4) and water as precursors for TiO(2), and TiCl(4) and ODA for the Ti-ODA hybrid. The results demonstrate excellent tunability of the film properties such as degree of crystallinity, roughness, refractive index, and hardness depending on the relative number of TiO(2) and Ti-ODA cycles employed.  相似文献   

15.
Atomic layer deposition (ALD) of the pyrite‐type metal disulfides FeS2, CoS2, and NiS2 is reported for the first time. The deposition processes use iron, cobalt, and nickel amidinate compounds as the corresponding metal precursors and the H2S plasma as the sulfur source. All the processes are demonstrated to follow ideal self‐limiting ALD growth behavior to produce fairly pure, smooth, well‐crystallized, stoichiometric pyrite FeS2, CoS2, and NiS2 films. By these processes, the FeS2, CoS2, and NiS2 films can also be uniformly and conformally deposited into deep narrow trenches with aspect ratios as high as 10:1, which thereby highlights the broad and promising applicability of these ALD processes for conformal film coatings on complex high‐aspect‐ratio 3D architectures in general.  相似文献   

16.
Analysis of ALD-processed thin films by ion-beam techniques   总被引:1,自引:0,他引:1  
This review introduces the possibilities of ion-beam techniques for the analysis of thin films and thin-film structures processed by atomic layer deposition (ALD). The characteristic features of ALD are also presented. The analytical techniques discussed include RBS, NRA and ERDA with its variants, viz. the TOF-ERDA and HI-ERDA. The thin film examples are taken from flat-panel display technology (TFEL structures) and the semiconductor industry (high-k insulators).Dedicated to the memory of Wilhelm Fresenius  相似文献   

17.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   

18.
Molybdenum forms a range of oxides with different stoichiometries and crystal structures, which lead to different properties and performance in diverse applications. Herein, crystalline molybdenum oxide thin films with controlled phase composition are deposited by atomic layer deposition. The MoO2(thd)2 and O3 as precursors enable well-controlled growth of uniform and conformal films at 200–275 °C. The as-deposited films are rough and, in most cases, consist of a mixture of α- and β-MoO3 as well as an unidentified suboxide MoOx (2.75 ≤ x ≤ 2.89) phase. The phase composition can be tuned by changing deposition conditions. The film stoichiometry is close to MoO3 and the films are relatively pure, the main impurity being hydrogen (2–7 at-%), with ≤1 at-% of carbon and nitrogen. Post-deposition annealing is studied in situ by high-temperature X-ray diffraction in air, O2, N2, and forming gas (10% H2/90% N2) atmospheres. Phase-pure films of MoO2 and α-MoO3 are obtained by annealing at 450 °C in forming gas and O2, respectively. The ability to tailor the phase composition of MoOx films deposited by scalable atomic layer deposition method represents an important step towards various applications of molybdenum oxides.  相似文献   

19.
Materials processing, and thin‐film deposition in particular, is decisive in the implementation of functional materials in industry and real‐world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal–organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro‐ and nanofabrication research and industries. In addition, vapor–solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research.  相似文献   

20.
Gallium sulfide (GaxS) and copper gallium sulfide (CuxGaySz) were synthetized by atomic layer deposition (ALD), using copper acetylacetonate Cu(acac)2, hexakis(dimethylamino)digallium [Ga(NMe2)3]2 and hydrogen sulfide (H2S). Thanks to the compatibility of the CuxS and GaxS ALD windows, a supercycle strategy that combines single growth cycles of the two binary compounds was used to generate the ternary material. A wide range of compositions and properties can be obtained from Ga-rich to Cu-rich via copper gallium sulfide thin films. Structural, morphological, and optoelectronic characterizations were performed on all films. Surface and in-depth chemical compositions were determined by X-ray photoelectron spectroscopy profiling, allowing a better understanding of the chemical reactions involved during the growth process. In the case of GaxS films, other Ga precursors have been tested. Our experimental observations, combined with reported ones and density functional theory calculation results have highlighted the specific reactivity of alkylamido precursor in ALD chemistry. Compositional studies revealed a significant O content which origin is discussed and represents an important challenge to address in ALD of sulfide materials in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号