首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the performance of several van der Waals (vdW) functionals at calculating the interactions between benzene and the copper (111) surface, using the local orbital approach in the SIESTA code. We demonstrate the importance of using surface optimized basis sets to calculate properties of pure surfaces, including surface energies and the work function. We quantify the errors created using (3 × 3) supercells to study adsorbate interactions using much larger supercells, and show non‐negligible errors in the binding energies and separation distances. We examine the eight high‐symmetry orientations of benzene on the Cu (111) surface, reporting the binding energies, separation distance, and change in work function. The optimized vdW‐DF(optB88‐vdW) functional provides superior results to the vdW‐DF(revPBE) and vdW‐DF2(rPW86) functionals, and closely matches the experimental and experimentally deduced values. This work demonstrates that local orbital methods using appropriate basis sets combined with a vdW functional can model adsorption between metal surfaces and organic molecules.  相似文献   

2.
Semiempirical (SM2, SM5.4A, MST‐AM1, COSMO‐AM1) and ab inito (HF/PCM‐vdW, MP2//PCM‐vdW, COSMO‐DFT) dielectric continuum‐solvation models as well as the surface‐tension model SM5.0R are analyzed with respect to predicting Henry's law constant at 25°C using a compound set of benzene and 39 benzene derivatives. Both hydrophilic and hydrophobic compounds are covered with a total variation in Henry's law constant of almost eight orders of magnitude corresponding to 44 kJ/mol, and the data set is selected such that there are cases where subtle changes in the molecular structure result in substantial changes of the free energy of solvation. The calculations with SM2, COSMO‐AM1, and COSMO‐DFT include solution‐phase geometry optimization, and the ab initio results refer to polarized basis sets of double‐zeta quality, with two gradient‐corrected functionals (BPW and BLYP) being used for the DFT‐based models. The results show considerable differences in performance between the different continuum‐solvation models, and among the methods yielding solvation free energies the systematic error ranges from −0.9 kJ/mol (SM5.0R) to 12.1 kJ/mol (MP2//PCM‐vdW). In particular, the nonelectrostatic solvation energy contributions of SM2, SM5.4A, MST‐AM1, and PCM‐vdW do not correlate with each other, and with PCM‐vdW omission of the nonelectrostatic component significantly improves the relative trend. The best statistics after scaling through linear regression are achieved with the electrostatic component of MP2//PCM‐vdW (r=0.94) and with COSMO‐DFT (r=0.93). The discussion includes detailed analyses of pecularities associated with certain functional groups, deviations from the expected relationship between dipole moment and solvation energy, and a simple approach to model dispersion interaction and cavitation energy by surface area terms that differentiate between individual atom types. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 17–34, 2000  相似文献   

3.
Single-molecule studies that allow to compute pKa values, proton affinities (gas-phase acidity/basicity) and the electrostatic energy of solvation have been performed for a heterogeneous set of 26 organic compounds. Quantum mechanical density functional theory (DFT) using the Becke-half&half and B3LYP functionals on optimized molecular geometries have been carried out to investigate the energetics of gas-phase protonation. The electrostatic contribution to the solvation energies of protonated and deprotonated compounds were calculated by solving the Poisson equation using atomic charges generated by fitting the electrostatic potential derived from the molecular wave functions in vacuum. The combination of gas-phase and electrostatic solvation energies by means of the thermodynamic cycle enabled us to compute pKa values for the 26 compounds, which cover six distinct chemical groups (carboxylic acids, benzoic acids, phenols, imides, pyridines and imidazoles). The computational procedure for determining pKa values is accurate and transferable with a root-mean-square deviation of 0.53 and 0.57 pKa units and a maximum error of 1.0 pKa and 1.3 pKa units for Becke-half&half and B3LYP DFT functionals, respectively.  相似文献   

4.
甲烷晶体的晶格能和弹性性质: 不同方法及泛函的评估   总被引:1,自引:0,他引:1  
通过对甲烷晶体进行结构、晶格能和弹性特性的研究, 评估了不包含和包含色散能量修正的密度泛函理论的性能. 我们分别利用不包含色散能量修正的密度泛函理论(DFT) (包含不同的标准泛函和杂化泛函)和包含色散能量修正的密度泛函理论(DFT-D)计算了甲烷晶体特性, 并与实验作对比. 尽管DFT-D 与传统密度泛函理论及杂化密度泛函理论相比, 修正了甲烷晶体中的范德华(vdW)相互作用, 但是一些修正方案过分修正了这种相互作用. 因此, 人们在使用DFT-D方法时务必谨慎.  相似文献   

5.
Density functional theory (DFT) has been established as a powerful research tool for heterogeneous catalysis research in obtaining key thermodynamic and/or kinetic parameters like adsorption energies, enthalpies of reaction, activation barriers, and rate constants. Understanding of density functional exchange-correlation approximations is essential to reveal the mechanism and performance of a catalyst. In the present work, we reported the influence of six exchange-correlation density functionals, including PBE, RPBE, BEEF+vdW, optB86b+vdW, SCAN, and SCAN+rVV10, on the adsorption energies, reaction energies and activation barriers of carbon hydrogenation and carbon-carbon couplings during the formation of methane and ethane over Ru(0001) and Ru(1011) surfaces. We found the calculated reaction energies are strongly dependent on exchange-correlation density functionals due to the difference in coordination number between reactants and products on surfaces. The deviation of the calculated elementary reaction energies can be accumulated to a large value for chemical reaction involving multiple steps and vary considerably with different exchange-correlation density functionals calculations. The different exchange-correlation density functionals are found to influence considerably the selectivity of Ru(0001) surface for methane, ethylene, and ethane formation determined by the adsorption energies of intermediates involved. However, the influence on the barriers of the elementary surface reactions and the structural sensitivity of Ru(0001) and Ru(1011) are modest. Our work highlights the limitation of exchange-correlation density functionals on computational catalysis and the importance of choosing a proper exchange-correlation density functional in correctly evaluating the activity and selectivity of a catalyst.  相似文献   

6.
A number of density functionals was utilized for the calculation of electron attachment free energy for nitrocompounds, quinones and azacyclic compounds. Different solvation models have been tested on the calculation of difference in free energies of solvation of oxidized and reduced forms of nitrocompounds in aqueous solution, quinones in acetonitrile, and azacyclic compounds in dimethylformamide. Gas‐phase free energies evaluated at the mPWB1K/tzvp level and solvation energies obtained using SMD model to compute solvation energies of neutral oxidized forms and PCM(Pauling) to compute solvation energies of anion‐radical reduced forms provide reasonable accuracy of the prediction of electron attachment free energy, difference in free solvation energies of oxidized and reduced forms, and as consequence yield reduction potentials in good agreement with experimental data (mean absolute deviation is 0.15 V). It was also found that SMD/M05‐2X/tzvp method provides reduction potentials with deviation of 0.12 V from the experimental values but in cases of nitrocompounds and quinones this accuracy is achieved due to the cancelation of errors. To predict reduction ability of naturally occurred iron containing species with respect to organic pollutants we exploited experimental data within the framework of Pourbaix (Eh ? pH) diagrams. We conclude that surface‐bound Fe(II) as well as certain forms of aqueous Fe(II)aq are capable of reducing a variety of nitroaromatic compounds, quinones and novel high energy materials under basic conditions (pH > 8). At the same time, zero‐valent iron is expected to be active under neutral and acidic conditions. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

7.
A free energy decomposition analysis algorithm for bonding and nonbonding interactions in various solvated environments, named energy decomposition analysis-polarizable continuum model (EDA-PCM), is implemented based on the localized molecular orbital-energy decomposition analysis (LMO-EDA) method, which is recently developed for interaction analysis in gas phase [P. F. Su and H. Li, J. Chem. Phys. 130, 074109 (2009)]. For single determinant wave functions, the EDA-PCM method divides the interaction energy into electrostatic, exchange, repulsion, polarization, desolvation, and dispersion terms. In the EDA-PCM scheme, the homogeneous solvated environment can be treated by the integral equation formulation of PCM (IEFPCM) or conductor-like polarizable continuum model (CPCM) method, while the heterogeneous solvated environment is handled by the Het-CPCM method. The EDA-PCM is able to obtain physically meaningful interaction analysis in different dielectric environments along the whole potential energy surfaces. Test calculations by MP2 and DFT functionals with homogeneous and heterogeneous solvation, involving hydrogen bonding, vdW interaction, metal-ligand binding, cation-π, and ionic interaction, show the robustness and adaptability of the EDA-PCM method. The computational results stress the importance of solvation effects to the intermolecular interactions in solvated environments.  相似文献   

8.
The IPolQ-Mod charges, which are the average of two charge sets fitted in vacuum state and condensed phase, take account of polarization effect implicitly in the solvation free energy calculation. However, the performance of the IPolQ-Mod charges sensitively depends on the QM levels used to generate the electrostatic potential from which the charges are fitted. In addition, the forces on atoms are not accurate theoretically in the molecular dynamics (MD) simulation as the solvent only feels the electrostatic potential of a half-polarized density of the solute according to the derivation of the IPolQ-Mod charges. To study these issues in detail, the IPolQ-Mod charges are combined with the reference potential (RP) strategy to predict the solvation free energies in the present study. It is found that the thermodynamic perturbation (TP) corrections utilizing total energy difference and interaction energy difference are almost the same and free of bias. The solvation free energies estimated by the RP method match very well with those obtained by applying IPolQ-Mod charges into MD simulation directly. By means of the RP strategy, the performances of the IPolQ-Mod charges with the change of the strength of the exact HF exchange in several DFT functionals are determined effectively. Although the “optimal” strengths are found in B3LYP and LC-ωPBE, the improvements over the default strength are not too much. In addition to the IPolQ-Mod charges, other charge models like bond charge correction (BCC) charges could also be combined with the RP strategy to study the thermodynamic properties like solvation free energy. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
Density functional theory (DFT) calculations are employed to compare the mechanism of the *OH attacks at all carbon atoms in quinoline. The computational analysis of the energy surface for the reaction of *OH with quinoline reveals that the formation of OH adducts proceeds through exothermic formation of pi-complexes/H-bonded complexes. The gas-phase reactions have activation energies ranging from <1.3 kcal/mol for the attack at positions C3 through C8 to 8.6 kcal/mol for the attack at the C2 position. Solvation, as described by the CPCM cavity model, lowers these activation barriers so that the attack at all carbon atoms except C2 is effectively barrierless. The *OH attack at C2 in solution is significantly different than at all other quinoline positions because it involves the only transition structure with energy higher than that of the starting materials and with an energetic barrier of 5.1 kcal/mol. The specific solvation approach also corroborates this finding because the attack at C2 was shown to have an energy barrier of 2.3 kcal/mol compared to the barrierless attack at C5. These results are in agreement with our recent experimental studies but differ from literature reports on the degradation of quinoline using the photo-Fenton reaction.  相似文献   

10.
Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) < Ca(2+) < Na(+) < Sr(2+) < K(+) < Cs(+), follows cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.  相似文献   

11.
A systematic computational approach to An(III) hydration on a density-functional level of theory, using quasi-relativistic 5f-in-core pseudopotentials and valence-only basis sets for the An(III) subsystems, is presented. Molecular structures, binding energies, hydration energies, and Gibbs free energies of hydration have been calculated for [An(III)(OH(2))(h)](3+) (h = 7, 8, 9) and [An(III)(OH(2))(h-1) * OH(2)](3+) (h = 8, 9), using large (7s6p5d2f1g)/[6s5p4d2f1g] An(III) and cc-pVQZ O and H basis sets within the COSMO implicit solvation model. An(III) preferred primary hydration numbers are found to be 8 for all An(III) at the gradient-corrected density-functional level of theory. Second-order M?ller-Plesset perturbation theory predicts preferred primary hydration numbers of 9 and 8 for Ac(III)-Md(III) and No(III)-Lr(III), respectively.  相似文献   

12.
The unusual and unique ability of O2 as target gas in kV collision-induced dissociations, to enhance a specific fragmentation of a mass selected ion, has been examined in detail. The affected dissociations studied were the loss of CH3* from CH3CH+X (X = OH, CH3, NH2, SH); CH3* and C1* loss from CH3C+(C1)CH3; C2H5* loss from CH3CH2CH+X (X = OH and NH2); H* loss from +CH2OH and +CH2NH2; O loss from 1,2-, 1,3-, and 1,4-C6H4(NO2)2+*; CH3NO+*; C6HsNO2+*; C5H5NO+* (pyridine N-oxide); 3- and 4-CH3C5H4NO+*. A general explanation of the phenomena, which was semiquantitatively tested in the present work, can be summarized as follows: the ion - O2 encounter excites the target molecules to their 3sigma(g)- state which resonantly return this energy to electronic state(s) in the ion. The excited ion now contains a sharp excess of a narrow range of internal energies, thus significantly and only enhancing fragmentations whose activation energies lie within this small energy manifold.  相似文献   

13.
14.
Free energies of solvation of phenylimidazole inhibitors of cytochrome P450cam were determined using (1) free energy simulation, (2) AMSOL-SM2 semiempirical methods, and (3) Poisson-Boltzmann methods. The goals of this study were threefold: (1) to compare the results obtained from the three different methods, (2) to investigate the effect of inclusion of intraperturbed group interactions on free energy simulation estimates of solvation free energy differences, and (3) to investigate to what extent differences in free energies of solvation among three of these inhibitors could account for observed differences in their enzyme binding free energies. In general, relative solvation free energies obtained from the free energy simulations and AMSOL-SM2 methods give comparable results (i.e., the same rank ordering and similar quantitative results, differing significantly from results obtained using Poisson-Boltzmann methods). The free energy simulation studies suggest that the neglect of intraperturbed group interactions had little effect on rank order of free energies of solvation of the polar phenylimidazoles. The relative desolvation free energies of the three inhibitors of P450cam—1-phenylimidazole (1-PI), 2-phenylimidazole (2-PI), and 4-phenylimidazole (4-PI)—with known enzyme bound X-ray structures parallel that of their known binding affinities and could account for most of the differences in the free energies of binding of these three inhibitors to P450cam. The origin of the difference of the free energies of solution of these three inhibitors is primarily the additional interaction between solvent and N(SINGLE BOND)H group in the imidazole ring of 2- and 4-phenylimidazole that is absent in the 1-phenylimidazole isomer. This hypothesis is substantiated by a second comparison of the relative solvation free energies of 4-phenylimidazole with its methylated derivative, 3-methyl-4-phenylimidazole, also lacking an N(SINGLE BOND)H group. © 1996 by John Wiley & Sons, Inc.  相似文献   

15.
The solvation energies of the pyridine*+ radical cation by 1-4 H2O molecules were determined by equilibrium measurements in a drift cell. The binding energies of the pyridine*+(H2O)n clusters are similar to the binding energies of protonated pyridine-water clusters, (C5H5NH+)(H2O)n, which involve NH+..OH2 bonds and different from those of the solvated benzene radical cation-water clusters, C6H6*+(H2O)n, which involve CHdelta+..OH2 bonds. These relations indicate that the observed pyridine*+ ions have the distonic *C5H4NH+ structures that can form NH+..OH2 bonds. The observed thermochemistry and ab initio calculations show that these bonds are not affected significantly by an unpaired electron at another site of the ion. Similar observations also identify the 2-fluoropyridine*+ distonic ion. The distonic structure is also consistent with the reactivity of pyridine*+ in H atom transfer, intra-cluster proton transfer and deprotonation reactions. The results present the first measured stepwise solvation energies of distonic ions, and demonstrate that cluster thermochemistry can identify distonic structures.  相似文献   

16.
The mechanism of the gas-phase reaction of *CH2OH+O2 to form CH2O+HO2* was studied theoretically by means of high-level quantum-chemical electronic structure methods (CASSCF and CCSD(T)). The calculations indicate that the oxidation of *CH2OH by O2 is a two-step process that goes through the peroxy radical intermediate *OOCH2OH (1), formed by the barrier-free radical addition of *CH2OH to O2. The concerted elimination of HO2* from 1 is predicted to occur via a five-membered ringlike transition structure of Cs symmetry, TS1, which lies 19.6 kcalmol(-1) below the sum of the energies of the reactants at 0 K. A four-membered ringlike transition structure TS2 of Cs symmetry, which lies 13.9 kcalmol(-1) above the energy of the separated reactants at 0 K, was also found for the concerted HO2* elimination from 1. An analysis of the electronic structures of TS1 and TS2 indicates that both modes of concerted HO2* elimination from 1 are better described as internal proton transfers than as intramolecular free-radical H-atom abstractions. The intramolecular 1,4-H-atom transfer in 1, which yields the alkoxy radical intermediate HOOCH2O*, takes place via a puckered ringlike transition structure TS3 that lies 13.7 kcalmol(-1) above the energy of the reactants at 0 K. In contrast with earlier studies suggesting that a direct H-atom abstraction mechanism might occur at high temperatures, we could not find any transition structure for direct H-atom transfer from the OH group of *CH2OH to the O2. The observed non-Arrhenius behavior of the temperature dependence of the rate constant for the gas-phase oxidation of *CH2OH is ascribed to the combined effect of the initial barrier-free formation of the *OO-CH2OH adduct with a substantial energy release and the existence of a low-barrier and two high-barrier pathways for its decomposition into CH2O and HO2*.  相似文献   

17.
We derive a power expansion of the correlation energy of weakly bound systems within the random phase approximation (RPA), in terms of the Coulomb interaction operator, and we show that the asymptotic limit of the second- and third-order terms yields the van der Waals (vdW) dispersion energy terms derived by Zaremba-Kohn and Axilrod-Teller within perturbation theory. We then show that the use of the second-order expansion of the RPA correlation energy results in rather inaccurate binding energy curves for weakly bonded systems, and discuss the implications of our findings for the development of approximate vdW density functionals. We also assess the accuracy of different exchange energy functionals used in the derivation of vdW density functionals.  相似文献   

18.
Reaction dynamics for a microsolvated SN2 reaction OH-(H2O)+CH3Cl have been investigated by means of the direct ab initio molecular dynamics method. The relative center-of-mass collision energies were chosen as 10, 15, and 25 kcal/mol. Three reaction channels were found as products. These are (1) a channel leading to complete dissociation (the products are CH3OH+Cl- +H2O: denoted by channel I), (2) a solvation channel (the products are Cl-(H2O)+CH3OH: channel II), and (3) a complex formation channel (the products are CH3OH...H2O+Cl-: channel III). The branching ratios for the three channels were drastically changed as a function of center-of-mass collision energy. The ratio of complete dissociation channel (channel I) increased with increasing collision energy, whereas that of channel III decreased. The solvation channel (channel II) was minor at all collision energies. The selectivity of the reaction channels and the mechanism are discussed on the basis of the theoretical results.  相似文献   

19.
20.
The performance of the Hartree-Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n-->pi* and pi-->pi* electronic excitation energies of acrolein. All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n-->pi* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the pi-->pi* electronic transition in solution, whereas the recent CAM-B3LYP functional performs well also in this case. The pi-->pi* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号