首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
The two signaling molecules H2S and H2O2 play key roles in maintaining intracellular redox homeostasis. The biological relationship between H2O2 and H2S remains largely unknown in redox biology. In this study, we rationally designed and synthesized single‐ and dual‐response fluorescent probes for detecting both H2O2 and H2S in living cells. The dual‐response probe was shown to be capable of mono‐ and dual‐detection of H2O2 and H2S selectively and sensitively. Detailed bioimaging studies based on the probes revealed that both exogenous and endogenous H2O2 could induce H2S biogenesis in living cells. By using gene‐knockdown techniques with bioimaging, the H2S biogenesis was found to be majorly cystathionine β‐synthase (CBS)‐dependent. Our finding shows the first direct evidence on the biological communication between H2O2 (ROS) and H2S (RSS) in vivo.  相似文献   

2.
There is a great demand for high-performance hydrogen sulfide(H2S) sensors with low operating temperatures. Ag/In2O3 hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)), and the developed sensors exhibit enhanced gassensing performance toward H2S. Gas sensing measurements indicate that the response of Ag/In2O3(2.5 wt%) sensor to 5 ppm H2S ha...  相似文献   

3.
Adsorption of hydrogen sulfide (H2S) on the external and internal surface of Zn12O12 nanocluster was studied by using density functional calculations. The results indicate that the H2S molecule is physically adsorbed or chemically dissociated by the nanocluster. It was found that the H2S molecule can dissociate into –H and–SH fragments, suggesting that the nanocluster might be a potential catalyst for dissociation of the H2S molecule. Also, dissociation of H2S to S species in internal surface of the Zn12O12 nanocluster is energetically impossible. The HOMO–LUMO energy gap of H2S dissociation configuration is changed about 27.68 %, indicating that the electronic properties of the nanocluster by dissociation process have strongly changed.  相似文献   

4.
To find the selectivity of H2S, we explicate the adsorption properties of water (H2O) and hydrogen sulfide (H2S) molecules on the external surfaces of free Ca12O12 nanocages using the density functional theory method. More specifically, binding energies, natural bond orbital charge transfer, dipole moment, molecular electrostatic potential, frontier molecular orbitals, density of states, and global indices of activities are calculated to deeply understand the impacts of the aforementioned molecules on the electronic and chemical properties of Ca12O12 nanocages. Our theoretical findings indicate that although H2O seems to be adsorbed in molecular form, the H2S molecule is fully dissociated during the adsorption process because of the weak bond between sulfur and hydrogen atoms of the molecule. Interestingly, the highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap of the nanocage is decreased by 1.87 eV upon H2S adsorption, indicating that the electrical conductivity of the nanocage is strongly increased by the dissociation process. In addition, the values of softness and electrophilicity for the H2S‐Ca12O12 complex are higher than those for the free nanocage. Our results suggest that Ca12O12 nanoclusters show promise in the adsorption/dissociation of H2S molecules, which can be used further for designing its selective sensor.  相似文献   

5.
A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant Km was estimated to be 2.21 mM. The detection of H2O2 concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration.  相似文献   

6.
Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn−N2O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn−N2O2−S). Systematic analyses demonstrate that the synergetic effects between the N2O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2O2. Remarkably, the Zn−N2O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2O2 generation. Consequently, the Zn−N2O2−S SAC exhibits impressive electrochemical H2O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm−2 in the flow cell, it shows a high H2O2 production rate of 6.924 mol gcat−1 h−1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.  相似文献   

7.
Profile measurements of the H2/O2 reaction have been obtained using a variable pressure flow reactor over pressure and temperature ranges of 0.3–15.7 atm and 850–1040 K, respectively. These data span the explosion limit behavior of the system and place significant emphasis on HO2 and H2O2 kinetics. The explosion limits of dilute H2/O2/N2 mixtures extend to higher pressures and temperatures than those previously observed for undiluted H2/O2 mixtures. In addition, the explosion limit data exhibit a marked transition to an extended second limit which runs parallel to the second limit criteria calculated by assuming HO2 formation to be terminating. The experimental data and modeling results show that the extended second limit remains an important boundary in H2/O2 kinetics. Near this limit, small increases in pressure can result in more than a two order of magnitude reduction in reaction rate. At conditions above the extended second limit, the reaction is characterized by an overall activation energy much higher than in the chain explosive regime. The overall data set, consisting primarily of experimentally measured profiles of H2, O2, H2O, and temperature, further expand the data base used for comprehensive mechanism development for the H2/O2 and CO/H2O/O2 systems. Several rate constants recommended in an earlier reaction mechanism have been modified using recently published rate constant data for H + O2 (+ N2) = HO2 (+ N2), HO2 + OH = H2O + O2, and HO2 + HO2 = H2O2 + O2. When these new rate constants are incorporated into the reaction mechanism, model predictions are in very good agreement with the experimental data. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 113–125, 1999  相似文献   

8.
H2S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P‐SSH). One family of proteins modified by H2S are zinc finger (ZF) proteins, which contain multiple zinc‐coordinating cysteine residues. Herein, we report the reactivity of H2S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2S was observed by low‐temperature ESI‐MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2S to form superoxide, as detected by ESI‐MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.  相似文献   

9.
We have discovered a new competitive pathway for O2 sensitivity in algal H2 production that is distinct from the O2 sensitivity of hydrogenase per se. This O2 sensitivity is apparently linked to the photosynthetic H2 production pathway that is coupled to proton translocation across the thylakoid membrane. Addition of the proton uncoupler carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone eliminates this mode of O2 inhibition on H2 photoevolution. This newly discovered inhibition is most likely owing to background O2 that apparently serves as a terminal electron acceptor in competition with the H2 production pathway for photosynthetically generated electrons from water splitting. This O2-sensitive H2 production electron transport pathway was inhibited by 3[3,4-dichlorophenyl]1,1-dimethylurea. Our experiments demonstrated that this new pathway is more sensitive to O2 than the traditionally known O2 sensitivity of hydrogenase. This discovery provides new insight into the mechanism of O2 inactivation of hydrogenase and may contribute to the development of a more-efficient and robust system for photosynthetic H2 production.  相似文献   

10.
Flow reactor experiments were performed over wide ranges of pressure (0.5–14.0 atm) and temperature (750–1100 K) to study H2/O2 and CO/H2O/O2 kinetics in the presence of trace quantities of NO and NO2. The promoting and inhibiting effects of NO reported previously at near atmospheric pressures extend throughout the range of pressures explored in the present study. At conditions where the recombination reaction H + O2 (+M) = HO2 (+M) is favored over the competing branching reaction, low concentrations of NO promote H2 and CO oxidation by converting HO2 to OH. In high concentrations, NO can also inhibit oxidative processes by catalyzing the recombination of radicals. The experimental data show that the overall effects of NO addition on fuel consumption and conversion of NO to NO2 depend strongly on pressure and stoichiometry. The addition of NO2 was also found to promote H2 and CO oxidation but only at conditions where the reacting mixture first promoted the conversion of NO2 to NO. Experimentally measured profiles of H2, CO, CO2, NO, NO2, O2, H2O, and temperature were used to constrain the development of a detailed kinetic mechanism consistent with the previously studied H2/O2, CO/H2O/O2, H2/NO2, and CO/H2O/N2O systems. Model predictions generated using the reaction mechanism presented here are in good agreement with the experimental data over the entire range of conditions explored. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 705–724, 1999  相似文献   

11.
Hydrogen sulfide oxidation experiments were conducted in O2/N2 at high pressure (30 and 100 bar) under oxidizing and stoichiometric conditions. Temperatures ranged from 450 to 925 K, with residence times of 3–20 s. Under stoichiometric conditions, the oxidation of H2S was initiated at 600 K and almost completed at 900 K. Under oxidizing conditions, the onset temperature for reaction was 500–550 K, depending on pressure and residence time, with full oxidization to SO2 at 550–600 K. Similar results were obtained in quartz and alumina tubes, indicating little influence of surface chemistry. The data were interpreted in terms of a detailed chemical kinetic model. The rate constants for selected reactions, including SH + O2 ⇄ SO2 + H, were determined from ab initio calculations. Modeling predictions generally overpredicted the temperature for onset of reaction. Calculations were sensitive to reactions of the comparatively unreactive SH radical. Under stoichiometric conditions, the oxidation rate was mostly controlled by the SH + SH branching ratio to form H2S + S (promoting reaction) and HSSH (terminating). Further work is desirable on the SH + SH recombination and on subsequent reactions in the S2 subset of the mechanism. Under oxidizing conditions, a high O2 concentration (augmented by the high pressure) causes the termolecular reaction SH + O2 + O2 → HSO + O3 to become the major consumption step for SH, according to the model. Consequently, calculations become very sensitive to the rate constant and product channels for the H2S + O3 reaction, which are currently not well established.  相似文献   

12.
Although germanium performs amazingly well at sites surrounding hetero‐coordinated impurities and under‐coordinated defects or skins with unusual properties, having important impact on electronic and optical devices, understanding the behavior of the local bonds and electrons at such sites remains a great challenge. Here we show that a combination of density functional theory calculations, zone‐resolved X‐ray photoelectron spectroscopy, and bond order length strength correlation mechanism has enabled us to clarify the physical origin of the Ge 3d core‐level shift for the under‐coordinated (111) and (100) skin with and without hetero‐coordinated H2, O2, H2O, H2O2, HF impurities. The Ge 3d level shifts from 27.579 (for an isolated atom) by 1.381 to 28.960 eV upon bulk formation. Atomic under‐coordination shifts the binding energy further to 29.823 eV for the (001) and to 29.713 eV for the (111) monolayer skin. Addition of O2, HF, H2O, H2O2 and Au impurities results in quantum entrapment by different amounts, but H adsorption leads to polarization.  相似文献   

13.
Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid‐β (Aβ) is found in AD brains, and Cu‐Aβ could contribute to this oxidative stress, as it is able to produce in vitro H2O2 and HO. in the presence of oxygen and biological reducing agents such as ascorbate. The mechanism of Cu‐Aβ‐catalyzed H2O2 production is however not known, although it was proposed that H2O2 is directly formed from O2 via a 2‐electron process. Here, we implement an electrochemical setup and use the specificity of superoxide dismutase‐1 (SOD1) to show, for the first time, that H2O2 production by Cu‐Aβ in the presence of ascorbate occurs mainly via a free O2.? intermediate. This finding radically changes the view on the catalytic mechanism of H2O2 production by Cu‐Aβ, and opens the possibility that Cu‐Aβ‐catalyzed O2.? contributes to oxidative stress in AD, and hence may be of interest.  相似文献   

14.
Intermolecular potential energy curves for the hydrogen bonded systems H2O·H2S, H2O·H2Se and H2S·H2S were calculated with nonempirical pseudopotentials using optimized-in-molecules basis sets augmented by polarization functions. The H2O·H2O interaction energy curve has been also considered as a test case. The present results for H2O·H2S and H2S·H2S indicate much weaker intermolecular interactions than those found in previous ab initio calculations. The H2O·H2Se interaction was found to be quite similar to H2O·H2S.This work was partly supported by the Polish Academy of Sciences within the Project PAN-09, 7.1.1.1On leave from Quantum Chemistry Laboratory, Dept. of Chemistry, University of Warsaw, Pasteura 1, 02-093. Warsaw, Poland  相似文献   

15.
Electrospun hemoglobin (Hb) microbelts were used as a novel precursor to produce a new class of carbon nanofibers (Hb‐CNFs) containing Fe species (Fe2O3 and/or Fe‐N4 moiety). The Hb‐CNFs modified glassy carbon electrode (Hb‐CNFs/GCE) exhibits significant oxidation/reduction towards H2O2. The observed H2O2 oxidation/reduction starting at ca. +0.26 V and +0.15 V (vs. Ag/AgCl) are significantly lower than the values observed at other CNFs modified GCE. The Hb‐CNFs/GCE was also applied to the amperometric detection of H2O2 and the results showed fast response, high sensitivity, excellent reproducibility, good selectivity, and wide dynamic range with good limit of detection.  相似文献   

16.
The H2O2-photosensitized emulsion copolymerization of tetrafluoroethylene with propylene was carried out at room temperature in the presence of gaseous monomers of 50 mole-% tetrafluoroethylene content. The conversion increased almost linearly with irradiation time. The rate of polymerization was proportional to the 1.0 power of H2O2 concentration up to 3.5 × 10?3M H2O2 and the 0.46 power of H2O2 concentration above 3.5 × 10?3M H2O2. The result obtained at low H2O2 concentration was almost consistent with that obtained in the radiation-induced method. The rate of polymerization was proportional to the 0.58 power of the emulsifier concentration, and the degree of polymerization was independent of the emulsifier concentration. The H2O2-photosensitized emulsion copolymerization of tetrafluoroethylene with propylene is terminated mainly by degradative chain transfer of the propagating radical to propylene at low H2O2 concentration and by the reaction of the propagating radical with OH radical from photolysis of H2O2–aqueous solution at high H2O2 concentration.  相似文献   

17.
In dissociation experiments of H2O2 under shock wave conditions, the spectra of H2O2 and HO2 have been observed in the UV at 2200 ≤ 2800 Å. By the use of these spectra the H2O2 decomposition in the presence of H2 and CO at 870 ≤ T ≤ 1000°K has been analyzed. It was found that in this temperature range, in contrast to low temperature behavior, reactions of H atoms with H2O2 and with HO2 are equally important. The rate of the reaction H + H2O2 ← HO2 + H2 was estimated in comparison with the rate of the reaction between H and HO2. Good agreement between calculated and measured concentration profiles of HO2 and H2O2 was obtained.  相似文献   

18.
The reactions of H2O+, H3O+, D2O+, and D3O+ with neutral H2O and D2O were studied by tandem mass spectrometry. The H2O+ and D2O+ ion reactions exhibited multiple channels, including charge transfer, proton transfer (or hydrogen atom abstraction), and isotopic exchange. The H3O+ and D3O+ ion reactions exhibited only isotope exchange. The variation in the abundances of all ions involved in the reactions was measured over a neutral pressure range from 0 to 2 × 10−5 Torr. A reaction scheme was chosen, which consisted of a sequence of charge transfer, proton transfer, and isotopic exchange reactions. Exact solutions to two groups of simultaneous differential equations were determined; one group started with the reaction of ionized water, and the other group started with the reactions of protonated water. A nonlinear least-squares regression technique was used to determine the rate coefficients of the individual reactions in the schemes from the ion abundance data. Branching ratios and relative rate coefficients were also determined in this manner.A delta chi-squared analysis of the results of the model fitted to the experimental data indicated that the kinetic information about the primary isotopic exchange processes is statistically the most significant. The errors in the derived values of the kinetic information of subsequent channels increased rapidly. Data from previously published selected ion flow tube (SIFT) study were analyzed in the same manner. Rigorous statistical analysis showed that the statistical isotope scrambling model was unable to explain either the SIFT or the tandem mass spectrometry data. This study shows that statistical analysis can be utilized to assess the validity of possible models in explaining experimentally observed kinetic behaviors.  相似文献   

19.
Layered nanocomposite of methylene blue (MB)-intercalated vanadium oxide was obtained through a simple hydrothermal synthesis method using MB, V2O5, and NaI as starting materials. The intercalation reaction was proven to be successful using X-ray diffraction pattern. The MB-V2O5 nanocomposite was characterized using a scanning electron micrograph, infrared spectra, thermogravimetric analysis, UV spectra, and electrochemical measurements. The intercalated MB cations showed a fine diffusion-controlled electrochemical redox process and facilitated the immobilized horseradish peroxidase’s (HRP) good catalytic reduction upon H2O2. The as-prepared MB-V2O5/HRP biosensor showed a linear response to H2O2 over a range from 2.0?×?10?6 to 9.5?×?10?5 M with a detection limit of 9.7?×?10?7 M (S/N ratio?=?3).  相似文献   

20.
The regularities of the bioelectrocatalytic reduction of H2O2 in the presence of peroxidase (POD) or a POD–Nafion composite adsorbed on the surface of carbon black or isotropic pyrocarbon are considered. The effect of the surface coverage with the enzyme, the H2O2 concentration, and the H2O2 supply rate to the electrode on the system activity is studied. Specific activities of three electrode types (POD adsorbed on carbon black or pyrocarbon, and the composite deposited on pyrocarbon) are close to one another. A mechanism for the bioelectrocatalytic reduction of H2O2 in a wide potential range is proposed. At potentials near the steady-state value, the reaction rate is limited by the electrochemical kinetics. At high polarizations, the formation of a POD compound with H2O2 is the limiting stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号