首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

2.
Palladium-catalyzed direct arylation of heteroaromatics has become a popular method for producing carbon–carbon bonds via C–H bond activation. A wide diversity of heteroaromatics such as furan, thiophenes and thiazoles can be used for this reaction. This paper reports the synthesis of N-propylphthalimide-substituted bis-(NHC)PdX2 complexes (NHC = N-heterocyclic carbene), and their catalytic activity in direct arylation reactions. The complexes have been prepared from Ag(I)NHC precursors by transmetallation and characterized by spectroscopy and elemental analysis. The bis-(NHC)PdX2 complexes show excellent activity as catalysts in the direct arylation reactions of 2-n-butylfuran, 2-n-butylthiophene and 2-isopropylthiazole.  相似文献   

3.
An efficient new methodology for the arylation of aldehydes is disclosed which uses dirhodium(II) catalysts and N-heterocyclic carbene (NHC) ligands. Complexes of Rh 2(OAc) 4 with one and two NHCs attached on the axial positions were successfully isolated, fully characterized, and used as catalysts in the reaction. The saturated monocomplex ((NHC 5)Rh 2(OAc) 4) 31 was shown to be the most active catalyst and was particularly efficient in the arylation of alkyl aldehydes. DFT calculations support participation of complexes with one axial NHC in the reaction as the catalysts active species and indicate that hydrogen bonds involving dirhodium unit, reactants, and solvent (alcohol) play an important role on the reaction mechanism.  相似文献   

4.
A general methodology for the α‐arylation of ketones using a nickel catalyst has been developed. The new well‐defined [Ni(IPr*)(cin)Cl] ( 1 c ) pre‐catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl‐based Ni–N‐heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC‐Ni catalysts. Preliminary mechanistic studies suggest a Ni0/NiII catalytic cycle to be at play.  相似文献   

5.
Highly selective cross‐hydroalkenylations of endocyclic 1,3‐dienes at the least substituted site with α‐olefins were achieved with a set of neutral (NHC)NiIIH(OTf) catalysts and cationic NiII catalysts with a novel NHC ligand. Under heteroatom assistance, skipped dienes were obtained in good yields, often from equal amounts of the two substrates and at a catalyst loading of 2–5 mol %. Rare 4,3‐product selectivity (i.e., with the H atom at C4 and the alkenyl group at C3 of the diene) was observed, which is different from the selectivity of known dimerizations of α‐olefins with both acyclic Co and Fe systems. The influence of the various substituents on the NHC, 1,3‐diene, and α‐olefin on the chemo‐, regio‐, and diastereoselectivity was studied. High levels of chirality transfer were observed with chiral cyclohexadiene derivatives.  相似文献   

6.
Palladium complexes incorporating chiral N‐heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α‐arylation of amides producing 3,3‐disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate‐determining and reductive elimination to be enantioselectivity‐determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8 , containing a tBu and a 1‐naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro‐oxindoles and three azaspiro‐oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X‐ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.  相似文献   

7.
The rhodium–NHC catalyzed arylation reaction of ethyl glyoxalate with aryl and alkyl boronic acids provides an efficient method for the synthesis of α-hydroxyesters. A wide range of α-hydroxyesters (up to 12) were prepared in good to excellent yields. KOtBu was the base of choice, along with tert-amyl alcohol as the solvent. As far as we are aware, this is the first report of this catalytic arylation, using rhodium–NHC catalysts with this specific substrate type.  相似文献   

8.
A new catalytic protocol for the regioselective direct arylation of quinoline derivatives at the 8-position has been developed. The reaction is catalyzed by a Rh(NHC) system, and the choice of the NHC ligand was most important for achieving high reactivity and selectivity.  相似文献   

9.
In situ-generated N-heterocyclic carbene (NHC) palladium catalysts and isolated NHC-palladium complexes have been tested for the telomerization reaction of 1,3-butadiene with primary and secondary amines. Superior catalyst activity (TON up to 400.000) and selectivity are obtained. Applying optimized conditions a variety of octa-2,7-dienylamines were prepared in high yield and excellent selectivity.  相似文献   

10.
A catalytic system for the direct β-alkylation of secondary alcohol with primary alcohol has been investigated. In this work, a series of cationic Ru(II)(η6-p-cymene) complexes with thioether-functionalized N-heterocyclic carbene ligands (imidazole-based 1 a – l and benzimidazole-based 2 a – e ) have been successfully synthesized and evaluated as catalysts. This investigation shows that modifications in the ligand moiety (thioether group and/or NHC core) have a strong effect on both selectivity and reactivity. Imidazole-based complex 1 c , with only 1 mol % of catalyst loading, displayed the best catalytic activity as well as the highest selectivity for the β-alcohol up to 98 : 2 for this tandem borrowing hydrogen/aldol methodology. Applied to a wide range of substrates, β-alkylated secondary alcohols have been obtained in moderate yields, but generally with complete conversion and very high selectivity.  相似文献   

11.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

12.
A series of piano-stool Ru−NHC (NHC=N-heterocyclic carbene) complexes have been prepared and characterized. The NHC ligands used herein have varying wingtip groups, showing the impact of steric congestion on the selectivity for the catalytic dimerization of terminal alkynes.  相似文献   

13.
Hydroboration of internal alkynes with N‐heterocyclic carbene boranes (NHC‐boranes) occurs to provide stable NHC (E)‐alkenylboranes upon thermolysis in the presence of di‐tert‐butyl peroxide. The E isomer results from an unusual trans‐hydroboration, and the E/Z selectivity is typically high (90:10 or greater). Evidence suggests that this hydroboration occurs by a radical‐chain reaction involving addition of an NHC‐boryl radical to an alkyne to give a β‐NHC‐borylalkenyl radical. Ensuing hydrogen abstraction from the starting NHC‐borane provides the product and returns the starting NHC‐boryl radical. Experiments suggest that the observed trans‐selectivity results from kinetic control in the hydrogen‐transfer reaction.  相似文献   

14.
N-Aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic ethenolysis products over the thermodynamic self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagation as a methylidene species and provide good yields and turnover numbers at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products.  相似文献   

15.
Three novel planar chiral N-heterocyclic carbene silver and rhodium complexes based on [2.2]paracyclophane have been prepared. These could be used as catalysts/precatalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes. We optimized the reaction conditions and have applied ultrasonic irradiation in the asymmetric arylation for the first time. Under ultrasound irradiation, the combination of planar chiral NHC–Ag complex 5 and RhCl3 can achieve higher catalytic activities in the asymmetric addition of organoboronic acids to aldehydes.  相似文献   

16.
Herein we describe for the first time the enantioselective catalytic arylation of ethyl glyoxalate using phenylboron reagents and chiral rhodium(I)–NHC catalysts. KOtBu was the base of choice, along with tert-amyl alcohol as the solvent. A novel chiral bis-imidazolium salt was synthesized and evaluated for the first time in this catalytic transformation. Although moderate enantioselectivities (up to 34% ee) were obtained for the phenylation reaction, despite the excellent yields, very low enantioselectivities were obtained using other arylboronic acids with a variety of chiral rhodium(I)–NHC catalysts.  相似文献   

17.
Improved synthetic approaches for preparing small‐sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brønsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brønsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.  相似文献   

18.
A number of palladium-N-heterocyclic carbene (NHC) complexes were found to be active catalysts for the arylation of ketones. A large number of substrates, both aryl halides and ketones, are compatible with the reaction conditions. The ketone arylation reactions are achieved with low catalyst loading in short reaction times using aryl chlorides and triflates as reactive partners. [reaction: see text]  相似文献   

19.
A series of Ni and Pd complexes with three different N‐heterocyclic carbene (NHC)‐based ligands (imidazolylidene, benzimidazolylidene and pyrene–imidazolylidene) has been prepared and fully characterized. The influence of the addition of pyrene to solutions containing these complexes is studied by means of NMR and UV/Vis spectroscopies and by cyclic voltammetry. The addition of pyrene to the pyrene–NHC‐containing Pd and Ni complexes gives rise to the formation of adducts by π–π stacking interactions between pyrene and the pyrene group of the NHC ligand. This interaction causes a modification of the electronic properties of the metal, as demonstrated by cyclic voltammetric studies of the Ni–NHC complexes. Theoretical calculations support this type of π‐interactions, and justify the higher interactions observed with the pyrene–NHC containing complexes. The catalytic activities of the complexes were tested in the Suzuki–Miyaura C?C coupling and in the α‐arylation of ketones. The addition of pyrene as an external π‐stacking additive does not affect the activities of the complexes in the Suzuki–Miyaura coupling, but this observation may be justified due to the fact that the process is heterogeneously catalyzed, as indicated by the mercury‐drop test. The addition of pyrene to the catalytic α‐arylation of ketones results in a decrease in the activity of the reactions catalyzed by the pyrene–imidazolylidene palladium complex, whereas the other two catalysts do not modify their activity in the presence of this π‐stacking additive.  相似文献   

20.
Methods for the highly stereoselective and regiodivergent hydrosilylation of 1,3‐disubstituted allenes have been developed. The synthesis of E allylsilanes is accomplished with palladium NHC catalysts, and trisubstituted Z alkenylsilanes are accessed with nickel NHC catalysts. Unsymmetrically substituted allenes are well tolerated with nickel catalysis and afford Z alkenylsilanes. Evidence for a plausible mechanism was obtained through an isotopic double‐labeling crossover study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号