首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
PFG NMR has been applied to study intracrystalline diffusion in USY zeolite as well as in the parent ammonium-ion exchanged zeolite Y used to produce the USY by zeolite steaming. The diffusion studies have been performed for a broad range of molecular displacements and with two different types of probe molecules (n-octane and 1,3,5-triisopropylbenzene) having critical molecular diameters smaller and larger than the openings of the zeolite micropores. Our experimental data unambiguously show that, in contrast to what is usually assumed in the literature, the intracrystalline mesopores do not significantly affect intracrystalline diffusion in USY. This result indicates that the intracrystalline mesopores of USY zeolite do not form a connected network, which would allow diffusion through crystals only via mesopores.  相似文献   

2.
Molecular modelling techniques have been used to screen zeolite catalysts for their suitability for organic synthesis. For example, we have used these techniques to study the alkylation of aromatic molecules which are important in the fine-chemical and drug industries. A survey of all such efforts is reviewed in this article. The application of molecular modelling techniques in a systematic manner is an efficient first step in the design of zeolite catalysts. As a qualitative screening tool, molecular graphics is used to visualize how well the reactant and product molecules fit inside the pores of the zeolites. Using a hybrid of several molecular modelling methods, which combines molecular dynamics (MD) and Monte Carlo methods with energy minimization, it is possible to determine the minimum energy locations of the molecules inside the zeolites cages. The minimum energy configurations determined by this hybrid method are taken as a starting point for diffusion of the molecules through the zeolite channels. When a molecule is allowed to diffuse through zeolite channel, the molecule attains some maxima and minima in its diffusion energy profile. From the differences between a maximum and a minimum energy configuration, the diffusion energy barrier for the molecule can be calculated in the zeolites. By comparing the diffusion energy barriers for various isomers of a molecule in different zeolites, it is possible to find out the most suitable zeolite for achieving the required shape-selectivity. In addition, factors influencing the diffusivity of the molecules and consequently the shape selectivity are derived. The list of factors and their relative importance are analysed to derive valuable guidelines to design shape-selective zeolite catalysts for a given reaction. Thus, the ultimate aim of these studies is to develop a high throughput computational screening process for the selection of shape-selective zeolite catalysts for various reactions. The dynamic behaviour of molecules inside the pores of zeolites can be studied using MD methods. Since MD is computationally time consuming, it is more efficient to screen the possible zeolite catalysts by energy minimization methods and then perform MD in specific zeolites. More accurate values of diffusivity of the molecules can be calculated using MD methods, and these values can be correlated with the shape-selectivity observed experimentally and /or derived from diffusion energy barrier calculations.  相似文献   

3.
The proton activity inside the channels of zeolite L has been studied by investigating dye-loaded zeolite L crystals under different conditions, such as water content, nature of the counterions, and nature of the solvent. The discussion is made within the frame of three types of dye-loaded zeolite L systems, classified according to their ability to exchange matter (dyes, cations, solvent, and other small molecules) with the environment. The classification refers to dye-loaded zeolites. The term "closed" and "semi-open" characterize different possibilities of the channels to exchange small molecules, cations, and solvent molecules with the environment, but not dyes. The "open" systems also allow for dye exchange. UV-visible and fluorescence spectroscopy have been used to observe the proton activity inside the zeolite L channels. The influence of the proton activity on the luminescence of encapsulated dyes is discussed, special attention being given to luminescence quenching by excited-state protonation. Partially proton-exchanged zeolite L can be a superacid, whereas for the M-exchanged form (M: K(+), Li(+), Cs(+), Mg(2+), Ca(2+)) the pH ranges from about 2.5 to 3.5. For these last forms, the differences in pH are due to the acid-base reactions of the respective metal cations with water inside the zeolite. Finally, we describe an easy experimental procedure that can be used to tune the proton activity inside the zeolite L to a considerable extent.  相似文献   

4.
用氘代吡啶和三甲基膦(TMP)作为碱性探针分子,用1H和31P魔角旋转(MAS)NMR谱对脱铝和未脱铝微孔HY分子筛中的Br#nsted酸(B酸)进行了定量研究.发现在脱铝HY中,吸附探针分子后的B酸量比吸附前的要多,而在未脱铝的HY样中,吸附吡啶分子前后测得的B酸量基本一致,证实了在微孔分子筛中存在碱“诱导”B酸位,即靠近铝的端位SiOH能在碱性探针分子的诱导下形成桥式羟基(SiOHAl).对这种碱“诱导”B酸位的形成机制进行了讨论.  相似文献   

5.
分子筛催化甲醇制烯烃反应(MTO)是典型的扩散主导反应过程,运用频率响应技术系统研究了几种典型产物分子(乙烯/乙烷、丙烯/丙烷、苯)在HZSM-5分子筛上的扩散行为。结果表明,频率响应法成功辨析了不同产物分子的传质规律,证实C2和C3烃分子在HZSM-5微孔孔道内具有相近的扩散速率,但由于受晶体表面阻碍效应影响不同,乙烷分子可自由进出HZSM-5分子筛孔道,而丙烷分子则受到较显著的微孔孔道扩散限制。另外,苯分子的扩散速率显著小于C2和C3分子,且苯分子受晶体表面阻抗效应的影响较小。本研究结果可用于解释HZSM-5分子筛在MTO反应中产物选择性的特点及表面结焦原因,进而从传质角度为高活性、选择性以及稳定性的高效甲醇转化制烃催化剂的定向开发提供理论指导。  相似文献   

6.
A strategy is presented for making metal clusters encapsulated inside microporous solids selectively accessible to reactant molecules by manipulating molecular sieve size and affinity for adsorbed molecules. This expands the catalytic capabilities of these materials to reactions demanding high selectivity and stability. Selective hydrogen combustion was achieved over Pt clusters encapsulated in LTA zeolite (KA, NaA, CaA) in a propene‐rich mixture obtained from propane dehydrogenation, showing pore‐size dependent selectivity and coking rate. Propene tended to adsorb at channels or external surfaces of zeolite, interfering the diffusion of hydrogen and oxygen. Tailoring the surface of LTA zeolite with additional alkali or alkaline earth oxides contributed to narrowing zeolite pore size and their affinity for propene. The thus‐modified Pt@KA catalyst displayed excellent hydrogen combustion selectivity (98.5 %) with high activity and superior anti‐coking and anti‐sintering properties.  相似文献   

7.
Using trimethylphosphine (TMP) and d5-pyridine(deuterated pyridine) as the basic probe molecules, the concentrations of Brönsted acid sites on both HY zeolite and dealuminated HY zeolite have been quantitatively determined using solid-state 1H and 31P magic-angle spinning (MAS) NMR. After adsorption of the probe molecules, the concentration of Brönsted acid sites on the dealuminated HY zeolite increases by about 25%, whereas that in the parent HY sample remains almost unchanged. The increase in the concentration of Brönsted acid sites is due to the appearance of base-induced Brönsted acid sites in the dealuminated HY zeolite. The terminal SiOH in the vicinity of the aluminum atom is “induced” to form a bridging hydroxyl group (SiOHAl) in the presence of the basic probe molecules. The mechanism of formation of the induced Brönsted acid sites has also been discussed.  相似文献   

8.
In this work, adsorption and diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in ZSM-5-type zeolites were studied using molecular simulation methods. Grand canonical Monte Carlo technique was to calculate adsorption isotherms and heats of vaporization of TCE and PCE in zeolite. The results demonstrated that the Pnma-P2(1)2(1)2(1) symmetry transition of the zeolite framework has no significant effect on the TCE adsorption capacity of the silicalite, but it causes an increase of the PCE adsorption capacity. Simulations using a silicalite framework with Pnma symmetry showed that the adsorption capacity of the silicalite was limited to five molecules per unit cell. However, when a framework with P2(1)2(1)2(1) symmetry was used in the simulations, the capacity reached to eight molecules per unit cell, which is the actual adsorption capacity. To calculate intracrystalline diffusion coefficients of these compounds, molecular dynamics simulations were performed at different temperatures and loadings. The results show that the zeolite symmetry has a significant impact on diffusion coefficients of the sorbate molecules.  相似文献   

9.
Gas separations with faujasite zeolite membranes have been examined using the method of molecular dynamics. Two binary mixtures are investigated, oxygen/nitrogen and nitrogen/carbon dioxide. These mixtures have been found experimentally to exhibit contrasting behavior. In O(2)/N(2) mixtures the ideal selectivity (pure systems) is higher than the mixture selectivity, while in N(2)/CO(2) the mixture selectivity is higher than the ideal selectivity. One of the key goals of this work was to seek a fundamental molecular level understanding of such divergent behavior. Our simulation results (using previously developed intermolecular models for both the gases and zeolites investigated) were found to replicate this experimental behavior. By examining the loading of the membranes and the diffusion rates inside the zeolites, we have been able to explain such contrasting behavior of O(2)/N(2) and N(2)/CO(2) mixtures. In the case of O(2)/N(2) mixtures, the adsorption and loading of both O(2) and N(2) in the membrane are quite competitive, and thus the drop in the selectivity in the mixture is primarily the result of oxygen slowing the diffusion of nitrogen and nitrogen somewhat increasing the diffusion of oxygen when they pass through the zeolite pores. In N(2)/CO(2) systems, CO(2) is rather selectively adsorbed and loaded in the zeolite, leaving very little room for N(2) adsorption. Thus although N(2) continues to have a higher diffusion rate than CO(2) even in the mixture, there are so few N(2) molecules in the zeolite in mixtures that the selectivity of the mixture increases significantly compared to the ideal (pure system) values. We have also compared simulation results with hydrodynamic theories that classify the permeance of membranes to be either due to surface diffusion, viscous flow, or Knudsen diffusion. Our results show surface diffusion to be the dominant mode, except in the case of N(2)/CO(2) binary mixtures where Knudsen diffusion also makes a contribution to N(2) transport.  相似文献   

10.
The complete oxidation of hydrocarbons with various structures (methane, n and wo-pentanes, cyclohexane, and benzene) on copper-modified ZSM-5 zeolite and the aromatization of propane on H-ZSM-5, are studied to analyze diffusion effects on the reaction kinetics. Comparison of the kinetic parameters of complete oxidation shows that the process rate and the rate law strongly depend on the reactant structure. Apparently, n-pentane oxidation is controlled by kinetics; the kinetics for other hydrocarbons depends on diffusion inside zeolite channels to different degrees. In the case of propane aromatization, its dehydrogenation and cracking, as well as the formation of aromatics from olefins, occurs on different active sites. Propane conversion is supposed to occur inside the zeolite channels, and the aromatization of olefins occurs on the outer surface of the zeolite crystal Deceased.  相似文献   

11.
The hydrothermal crystallization of X-type zeolite with a Si/Al ratio of 1.15 was achieved from the Na(2)O-Al(2)O(3)-SiO(2)-H(2)O system at 368 K under static conditions. The post-synthesis modification was carried out by a conventional ion-exchange technique to obtain K(+)-, Rb(+)-, and Cs(+)-exchanged samples with different degrees of exchange. All the samples were characterized using chemical analysis, IR, SEM, powder XRD, low-temperature nitrogen adsorption, and equilibrium sorption uptakes of different probe molecules. The relative intensities of the XRD peaks of cation-exchanged zeolite were found to be affected to different extents, depending on the nature and the concentration of nonframework cationic size, without any shift in the positions of reflection. The sorptive properties of the K-, Rb-, and Cs-exchanged samples were studied using nitrogen, water, and different C(6) hydrocarbons including bulkier benzene derivative 1,3,5-trimethylbenzene (TMB) as probe molecules. The trend observed in chemical potential estimated as a function of nitrogen coverage indicates different sorption selectivity because of differences in the cationic size and population. Sorption uptake kinetics for probe molecules such as water, n-hexane, cyclohexane, benzene, and TMB were also studied. The samples with higher degrees of exchange and/or cationic size have shown a decrease in hydrophilic character due to the formation of irregular networks of water molecules connected with preadsorbed water molecules, framework oxygen ions, and nonframework cations. Among C(6) hydrocarbons including TMB, the benzene molecule is found to be the most promising probe for the estimation of openness of structure and surface heterogeneity as well. Copyright 2001 Academic Press.  相似文献   

12.
Mesoporous materials have been intensely studied recently, mainly as possible component for FCC (Fluid Catalytic Cracking) catalysts due to their large surface area and accessibility to large hydrocarbon molecules. It is thus of interest for the oil industry to understand the diffusion behavior of some standard molecules in these materials. Y Zeolites, usually employed in fluid catalytic cracking, can be modified by removal of aluminum atoms from the zeolitic framework to present a greater mesoporous contribution. Dealumination of Y zeolite framework is also known to improve the stability of the catalyst thus making it more suitable for the FCC operation. This study presents diffusion measurements performed with the ZLC (Zero-Length Column) method, developed in the late eighties by Eic and Ruthven (1988a, b). The ZLC method has been largely used for a number of systems, either in gas or in liquid phases. We have now applied the ZLC method for gas phase diffusion measurements of linear paraffins (C7–C10) in dealuminated Y zeolite (USY). Experimental data were obtained at different temperatures (150 to 240°C) and flow rates (40 to 120 ml/min) and correlated through a transient Fickian diffusion model.  相似文献   

13.
The isopropanol diffusion and dehydration in zeolite HZSM-5 were studied by FTIR spectroscopy. The alcohol dehydration was shown to start at the temperature above 60°C. It was found that at temperatures above 350°C, the isopropanol dehydration was limited by diffusion in the mesopores of zeolite. The method developed allows studying the kinetics of interactions of the reagent molecules with the OH-groups at the external surface of the zeolite and inside its channels.  相似文献   

14.
A mechanical device (NMR lift) has been built to displace vertically an object (typically an NMR sample tube) inside the NMR probe with an accuracy of 1 microm. A series of single pulse experiments are performed for incremented vertical positions of the sample. With a sufficiently spatially selective radio-frequency (r.f.) field, one obtains chemical shift information along the displacement direction (one-dimensional chemical shift imaging (CSI)). Knowing the vertical r.f. field profile (the amplitude of the r.f. field along the vertical direction), one can reconstruct the spectrum associated with all the slices corresponding to consecutive sample positions and improve the spatial resolution, which is simply related to the accuracy of the displacement device. Beside tests performed on phantoms, the method has been applied to solvent penetration in polymers and to benzene diffusion in a heterogeneous zeolite medium.  相似文献   

15.
Zeolite Beta single crystals with intracrystalline hierarchical porosity at macro-, meso-, and micro-length scales can effectively overcome the diffusion limitations in the conversion of bulky molecules. However, the construction of large zeolite Beta single crystals with such porosity is a challenge. We report herein the synthesis of hierarchically ordered macro-mesoporous single-crystalline zeolite Beta (OMMS-Beta) with a rare micron-scale crystal size by an in situ bottom-up confined zeolite crystallization strategy. The fully interconnected intracrystalline macro-meso-microporous hierarchy and the micron-sized single-crystalline nature of OMMS-Beta lead to improved accessibility to active sites and outstanding (hydro)thermal stability. Higher catalytic performances in gas-phase and liquid-phase acid-catalyzed reactions involving bulky molecules are obtained compared to commercial Beta and nanosized Beta zeolites. The strategy has been extended to the synthesis of other zeolitic materials, including ZSM-5, TS-1, and SAPO-34.  相似文献   

16.
The functionalization of nanoporous zeolite L crystals with β‐cyclodextrin (CD) has been demonstrated. The zeolite surface was first modified with amino groups by using two different aminoalkoxysilanes. Then, 1,4‐phenylene diisothiocyanate was reacted with the amino monolayer and used to bind CD heptamine by using its remaining isothiocyanate groups. The use of the different aminoalkoxysilanes, 3‐aminopropyl dimethylethoxysilane (APDMES) and 3‐aminopropyl triethoxysilane (APTES), led to drastic differences in uptake and release properties. Thionine was found to be absorbed and released from amino‐ and CD‐functionalized zeolites when APDMES was used, whereas functionalization by APTES led to complete blockage of the zeolite channels. Fluorescence microscopy showed that the CD groups covalently attached to the zeolite crystals could bind adamantyl‐modified dyes in a specific and reversible manner. This strategy allowed the specific immobilization of His‐tagged proteins by using combined host–guest and His‐tag‐Ni‐nitrilotriacetic acid (NTA) coordination chemistry. Such multifunctional systems have the potential for encapsulation of drug molecules inside the zeolite pores and non‐covalent attachment of other (for example, targeting) ligand molecules on its surface.  相似文献   

17.
Diffusion properties of mesostructured zeolite 5A were investigated by employing n-alkanes as probe molecules using the zero length column (ZLC) method. The mesopores were found to enhance molecule diffusion. Moreover, the effective diffusion time constant (D eff/R 2) increased with mesoporosity in the zeolites between 308 K and 393 K, whereas the activation energy decreased with increasing mesopore volume. The effective diffusivity values of n-alkanes in mesoporous zeolite 5A were generally higher than that the microporous zeolite 5A sample. This clearly implied the important role of the mesopore in zeolites crystals in facilitating the transport of reaction molecules due to shorter average diffusion path length and less steric hindrance.  相似文献   

18.
Lateral diffusion of membrane components makes possible any in-plane membrane reaction and has a key role in signaling in cell membranes. In this report the equilibrium lateral diffusion of intrinsic molecules in an equimolar DMPC/DSPC mixture is simulated using a thoroughly tested two-state model of two-component phospholipid bilayers. The model has been successful in calculating the excess heat capacity function, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., Thompson, T. E., Biltonen, R. L. Biophys. J. 1999, 76, 2099-2110). In the gel/fluid mixed phase region, a diffusing intrinsic molecule may change its state from fluid to gel (or from gel to fluid) at any time. A common characterization of the diffusion of intrinsic molecules is given by the simulated average first-passage time curves. We find that these curves can be described as power functions containing two parameters, alpha and beta, except near the percolation threshold of gel/fluid or compositional clusters. We find also that the intrinsic molecules are involved in approximately normal diffusion, i.e., beta approximately 2 in the extreme gel and fluid phase regions, while in the gel/fluid and gel/gel mixed phase regions the diffusion is anomalous, i.e., beta not equal 2. In the mixed phase regions, when the initial local state of the diffusing molecule is not specified, each component is involved in sub-diffusion (beta > 2). In the gel/fluid mixed phase region molecules situated initially inside a fluid cluster are involved in sub-diffusion, but DMPC molecules situated initially inside a gel cluster are involved in super-diffusion (beta < 2). The possibility of anomalous diffusion in membranes apparently arises because the diffusing molecule visits a variety of different environments characterized by its relative proximity to various membrane components. The diffusion is actually anomalous when the components of the bilayer are nonrandomly distributed. The deviation from random distribution is strongly correlated with beta. Similar to the results of the NMR experiments, the calculated relative diffusion coefficient continuously decreases in the gel/fluid mixed phase region with decreasing temperature. In apparent contradiction, diffusion measured by fluorescence recovery after photobleaching (FRAP) demonstrates the existence of a threshold temperature, below which long-range diffusion of FRAP probe molecules is essentially blocked. This threshold temperature is highly correlated with the percolation temperature of gel clusters.  相似文献   

19.
The influence of mechanical activation and the nature of a carrier on the structural and diffusion properties of zeolite-containing catalysts, including the microporous and mesoporous structure of zeolites, was studied. Zeolite-matrix contacts were found to provide the accessibility of the inside volume of zeolite pores. In addition, new pores of a larger size appeared. The IR spectra of adsorbed molecules were used to determine the effective diffusion coefficients of methanol in the porous system of zeolites. It was shown that there was some optimum zeolite pore radius at which the largest diffusion coefficient was attained.  相似文献   

20.
Translational mobility of n-decane molecules in a porous space of NaX zeolite was studied within the wide ranges of diffusion times and temperatures. The dependence of the effective self-diffusion coefficient on diffusion time was established. Confined mobility of diffusant molecules inside the crystallite was observed both for complete and partial filling of NaX pores with a liquid, when the adsorption barrier was absent at the interface between intra- and intercrystallite regions. It was suggested that obstacles are present at the surface of NaX crystallites complicating the transfer of liquid molecules from crystallite channels to intercrystallite space. True value of self-diffusion coefficient ofn-decane in the itracrystallite space of NaX was determined and its dependence on the concentration of liquid molecules in zeolite channels was considered. A special attention was paid to the study of molecular exchange between intra- and intercrystallite-confined liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号