首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic conformational analysis on blocked β‐amino acids as constituents of β‐peptides by ab initio MO theory reveals that the conformer pool of β‐peptide monomers is essentially determined by the conformation of simple submonomer fragments. The influence of single and multiple substitutions at the C(α) and C(β) backbone atoms on the intrinsic folding properties of the monomers was estimated both in the single‐molecule approximation and in a polar solvent continuum, applying a quantum‐chemical SCRF model. Substitution at C(β) has a higher impact on the β‐amino acid conformation than a substitution at C(α). It can be shown that the conformations of important periodic secondary structures in β‐peptides belong to the conformer pool of the monomers, even for those secondary‐structure elements where H‐bond formation appears only in longer sequences. Rules for design of special secondary‐structure types by selection of an actual substituent pattern in the β‐amino acid constituents have been derived within the monomer approach.  相似文献   

2.
A straightforward and effective method of stabilizing a β-hairpin conformation in a cyclic protein loop mimetic is described, which exploits the templating effect of a heterochiral D -Pro-L -Pro dipeptide unit. A twelve-residue β-hairpin loop was grafted from the extracellular interferon γ receptor onto the heterochiral D -Pro-L -Pro dipeptide template to afford a fourteen-residue cyclic peptide. The residues directly attached to the D -Pro-L -Pro template are shown by NMR spectroscopy to structurally mimic corresponding residues in adjacent antiparallel β-strands in the receptor. MD Simulations with and without time-averaged distance restraints support this view and indicate that the tip of the loop is more flexible, as inferred also for the receptor protein from crystallographic data. The templating effect of the heterochiral diproline unit also promotes efficient backbone cyclization of the fourteen-residue linear peptide precursor, suggesting that a wide variety of related protein loop mimetics incorporating the D -Pro-L -Pro template might be readily accessible.  相似文献   

3.
A molecular‐dynamics (MD) simulation study of two heptapeptides containing α‐ and β‐amino acid residues is presented. According to NMR experiments, the two peptides differ in dominant fold when solvated in MeOH: peptide 3 adopts predominantly β‐hairpin‐like conformations, while peptide 8 adopts a 14/15‐helical fold. The MD simulations largely reproduce the experimental data. Application of NOE atom? atom distance restraining improves the agreement with experimental data, but reduces the conformational sampling. Peptide 3 shows a variety of conformations, while still agreeing with the NOE and 3J‐coupling data, whereas the conformational ensemble of peptide 8 is dominated by one helical conformation. The results confirm the suitability of the GROMOS 54A7 force field for simulation or structure refinement of mixed α/β‐peptides in MeOH.  相似文献   

4.
The (3R,5S,6E,8S,10R)‐11‐amino‐3,5,8,10‐tetramethylundec‐6‐enoic acid (ATUA; 1 ), which was designed as a βII′‐turn mimic according to the concepts of allylic strain and 2,4‐dimethylpentane units, was incorporated into a cyclic RGD peptide. The three‐dimensional structure of cyclo(‐RGD‐ATUA‐) (=cyclo(‐Arg‐Gly‐Asp‐ATUA‐)) 4 in H2O was determined by NMR techniques, distance geometry calculations and molecular‐dynamics simulations. The RGD sequence of 4 shows high conformational flexibility but some preference for an extended conformation. The structural features of the RGD sequence of 4 were compared with the RGD moiety of cyclo(‐RGDfV‐) (=cyclo(‐Arg‐Gly‐Asp‐D ‐Phe‐Val‐)). In contrast to cyclo(‐RGDfV‐), which is a highly active αvβ3 antagonist and selective against αIIbβ3, cyclo(‐RGD‐ATUA‐) shows a lower activity and selectivity. The structure of the ATUA residue in the cyclic peptide resembles a βII′‐turn‐like conformation. Its middle part, adjacent to the C?C bond, strongly prefers the designed and desired structure.  相似文献   

5.
The incorporation of the β‐amino acid residues into specific positions in the strands and β‐turn segments of peptide hairpins is being systematically explored. The presence of an additional torsion variable about the C(α) C(β) bond (θ) enhances the conformational repertoire in β‐residues. The conformational analysis of three designed peptide hairpins composed of α/β‐hybrid segments is described: Boc‐Leu‐Val‐Val‐DPro‐β Phe ‐Leu‐Val‐Val‐OMe ( 1 ), Boc‐Leu‐Val‐β Val ‐DPro‐Gly‐β Leu ‐Val‐Val‐OMe ( 2 ), and Boc‐Leu‐Val‐β Phe ‐Val‐DPro‐Gly‐Leu‐β Phe ‐Val‐Val‐OMe ( 3 ). 500‐MHz 1H‐NMR Analysis supports a preponderance of β‐hairpin conformation in solution for all three peptides, with critical cross‐strand NOEs providing evidence for the proposed structures. The crystal structure of peptide 2 reveals a β‐hairpin conformation with two β‐residues occupying facing, non‐H‐bonded positions in antiparallel β‐strands. Notably, βVal(3) adopts a gauche conformation about the C(α) C(β) bond (θ=+65°) without disturbing cross‐strand H‐bonding. The crystal structure of 2 , together with previously published crystal structures of peptides 3 and Boc‐β Phe ‐β Phe ‐DPro‐Gly‐β Phe ‐β Phe ‐OMe, provide an opportunity to visualize the packing of peptide sheets with local ‘polar segments' formed as a consequence of reversal peptide‐bond orientation. The available structural evidence for hairpins suggests that β‐residues can be accommodated into nucleating turn segments and into both the H‐bonding and non‐H‐bonding positions on the strands.  相似文献   

6.
The effect of gem‐dialkyl substituents on the backbone conformations of β‐amino acid residues in peptides has been investigated by using four model peptides: Boc‐Xxx‐β2,2Ac6c(1‐aminomethylcyclohexanecarboxylic acid)‐NHMe (Xxx=Leu ( 1 ), Phe ( 2 ); Boc=tert‐butyloxycarbonyl) and Boc‐Xxx‐β3,3Ac6c(1‐aminocyclohexaneacetic acid)‐NHMe (Xxx=Leu ( 3 ), Phe ( 4 )). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc‐Leu‐β2,2Ac6c‐NHMe ( 1 ) established a C11 hydrogen‐bonded turn in the αβ‐hybrid sequence. The observed torsion angles (α(?≈?60°, ψ≈?30°), β(?≈?90°, θ≈60°, ψ≈?90°)) corresponded to a C11 helical turn, which was a backbone‐expanded analogue of the type III β turn in αα sequences. The crystal structure of the peptide Boc‐Phe‐β3,3Ac6c‐NHMe ( 4 ) established a C11 hydrogen‐bonded turn with distinctly different backbone torsion angles (α(?≈?60°, ψ≈120°), β(?≈60°, θ≈60°, ψ≈?60°)), which corresponded to a backbone‐expanded analogue of the type II β turn observed in αα sequences. In peptide 4 , the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these αβ‐hybrid sequences.  相似文献   

7.
The ability to design properly folded β‐peptides with specific biological activities requires detailed insight into the relationship between the amino acid sequence and the secondary and/or tertiary structure of the peptide. One of the most frequently used spectroscopic techniques for resolving the structure of a biomolecule is NMR spectroscopy. Because only signal intensities and frequencies are recorded in the experiment, a conformational interpretation of the recorded data is not straightforward, especially for flexible molecules. The occurrence of conformational and/or time averaging, and the limited amount and accuracy of experimental data hamper the precise conformational determination of a biomolecule. In addition, the relation between experimental observables with the underlying conformational ensemble is often only approximately known, thereby aggravating the difficulty of structure determination of biomolecules. The problematic aspects of structure refinement based on NMR nuclear Overhauser effect (NOE) intensities and 3J‐coupling data are illustrated by simulating a β‐octapeptide in explicit MeOH and H2O as solvents using three different force fields. NMR Data indicated that this peptide would fold into a 314‐helix in MeOH and into a hairpin in H2O. Our analysis focused on the conformational space visited by the peptide, on structural properties of the peptide, and on agreement of the MD trajectories with available NMR data. We conclude that 1) although the 314‐helical structure is present when the peptide is solvated in MeOH, it is not the only relevant conformation, and that 2) the NMR data set available for the peptide, when solvated in H2O, does not provide sufficient information to derive a single secondary structure, but rather a multitude of folds that fulfill the NOE data set.  相似文献   

8.
Rational conformation design led us to a synthesis of the ω‐amido‐undecenamide 4 , which was shown by theoretical means (simulated annealing techniques) and by NMR and IR spectroscopy to have a high tendency to populate a conformation corresponding to a natural β‐II′‐type hairpin, despite possessing a conformationally fully flexible open‐chain backbone.  相似文献   

9.
We present a molecular‐dynamics simulation study of an α‐heptapeptide containing an α‐aminoisobutyric acid (=2‐methylalanine; Aib) residue, Val1‐Ala2‐Leu3‐Aib4‐Ile5‐Met6‐Phe7, and a quantum‐mechanical (QM) study of simplified models to investigate the propensity of the Aib residue to induce 310/α‐helical conformation. For comparison, we have also performed simulations of three analogues of the peptide with the Aib residue being replaced by L ‐Ala, D ‐Ala, and Gly, respectively, which provide information on the subtitution effect at C(α) (two Me groups for Aib, one for L ‐Ala and D ‐Ala, and zero for Gly). Our simulations suggest that, in MeOH, the heptapeptide hardly folds into canonical helical conformations, but appears to populate multiple conformations, i.e., C7 and 310‐helical ones, which is in agreement with results from the QM calculations and NMR experiments. The populations of these conformations depend on the polarity of the solvent. Our study confirms that a short peptide, though with the presence of an Aib residue in the middle of the chain, does not have to fold to an α‐helical secondary structure. To generate a helical conformation for a linear peptide, several Aib residues should be present in the peptide, either sequentially or alternatively, to enhance the propensity of Aib‐containing peptides towards the helical conformation. A correction of a few of the published NMR data is reported.  相似文献   

10.
The NMR‐solution structure of an α‐heptapeptide with a central Aib residue was investigated in order to verify that, in contrast to β‐peptides, short α‐peptides do not form a helical structures in MeOH. Although the central Aib residue was found to induce a bend in the experimentally determined structure, no secondary structure typical for longer α‐peptides or proteins was found. A β2/β3‐nonapeptide with polar, positively charged side chains was subjected to NMR analysis in MeOH and H2O. Whereas, in MeOH, it folds into a 10/12‐helix very similar to the structure determined for a corresponding β2/β3‐nonapeptide with only aliphatic side chains, no dominant conformation could be determined in H2O. Finally, the NMR analysis of a β3‐icosapeptide containing the side chains of all 20 proteinogenic amino acids in MeOH is described. It revealed that this 20mer folds into a 314‐helix over its whole length forming six full turns, the longest 314‐helix found so far. Together, our findings confirm that, in contrast to α‐peptides, β‐peptides not only form helices with just six residues, but also form helices that are longer than helical sections usually observed in proteins or natural peptides. The higher helix‐forming propensity of long β‐peptides is attributed to the conformation‐stabilizing effect of the staggered ethane sections in β‐peptides which outweighs the detrimental effect of the increasing macrodipole.  相似文献   

11.
12.
Cyclo‐β‐tetrapeptides are known to adopt a conformation with an intramolecular transannular hydrogen bond in solution. Analysis of this structure reveals that incorporation of a β2‐amino‐acid residue should lead to mimics of ‘α‐peptidic β‐turns’ (cf. A, B, C ). It is also known that short‐chain mixed β/α‐peptides with appropriate side chains can be used to mimic interactions between α‐peptidic hairpin turns and G protein‐coupled receptors. Based on these facts, we have now prepared a number of cyclic and open‐chain tetrapeptides, 7 – 20 , consisting of α‐, β2‐, and β3‐amino‐acid residues, which bear the side chains of Trp and Lys, and possess backbone configurations such that they should be capable of mimicking somatostatin in its affinity for the human SRIF receptors (hsst1–5). All peptides were prepared by solid‐phase coupling by the Fmoc strategy. For the cyclic peptides, the three‐dimensional orthogonal methodology (Scheme 3) was employed with best success. The new compounds were characterized by high‐resolution mass spectrometry, NMR and CD spectroscopy, and, in five cases, by a full NMR‐solution‐structure determination (in MeOH or H2O; Fig. 4). The affinities of the new compounds for the receptors hsst1–5 were determined by competition with [125I]LTT‐SRIF28 or [125I] [Tyr10]‐CST14. In Table 1, the data are listed, together with corresponding values of all β‐ and γ‐peptidic somatostatin/Sandostatin® mimics measured previously by our groups. Submicromolar affinities have been achieved for most of the human SRIF receptors hsst1–5. Especially high, specific binding affinities for receptor hsst4 (which is highly expressed in lung and brain tissue, although still of unknown function!) was observed with some of the β‐peptidic mimics. In view of the fact that numerous peptide‐activated G protein‐coupled receptors (GPCRs) recognize ligands with turn structure (Table 2), the results reported herein are relevant far beyond the realm of somatostatin: many other peptide GPCRs should be ‘reached’ with β‐ and γ‐peptidic mimics as well, and these compounds are proteolytically and metabolically stable, and do not need to be cell‐penetrating for this purpose (Fig. 5).  相似文献   

13.
The 270 MHz 1H and 22.6 MHz 13C NMR spectra of DL -phosphothreonine in D2O have been measured and analysed as a function of pD. The trans-trans conformation of the fragment H-α? C-α? C-β? O? P predominates at all pD values. The C-β—O gauche contribution is notably larger for pD values in the range 7≤pD<10 than for acidic or more basic solutions which is in accordance with earlier results for phosphoserine (PSer).  相似文献   

14.
The structural properties of an all‐β3‐dodecapeptide with the sequence H‐β‐HLys(Nε‐CO(CH2)3‐S Acm)‐β‐HPhe‐β‐HTyr‐β‐HLeu‐β‐HLys‐β‐HSer‐β‐HLys‐β‐HPhe‐β‐HSer‐β‐HVal‐β‐HLys‐β‐HAla‐OH ( 1 ) have been studied by two‐dimensional homonuclear 1H‐NMR and by CD spectroscopy. In MeOH solution, high‐resolution NMR spectroscopy showed that the β‐dodecapeptide forms an (M)‐314‐helix, and the CD spectrum corresponds to the pattern expected for an (M)‐314‐helical secondary structure. In aqueous solution, however, the peptide adopts a predominantly extended conformation without regular secondary‐structure elements, which is in agreement with the absence of the characteristic trough near 215 nm in the CD spectrum. The NMR and CD measurements with solutions of 1 in MeOH containing 3M urea further indicated that the peptide retains the regular secondary structural elements under these conditions, whereas, after addition of 40% (v/v) H2O to the MeOH solution, the large 1H‐chemical‐shift dispersion indicative of a defined spatial peptide fold was lost. The β3‐dodecapeptide is – so far – the longest β‐peptide shown to adopt a regular (M)‐314‐helix conformation in an organic solvent. The observation that the structure of this long β3‐peptide is not maintained in aqueous solution indicates that the (M)‐314‐fold is primarily stabilized by short‐range interactions.  相似文献   

15.
Bridging between (i)‐ and (i+3)‐positions in a β3‐peptide with a tether of appropriate length is expected to prevent the corresponding 314‐helix from unfolding (Fig. 1). The β3‐peptide H‐β3hVal‐β3hLys‐β3hSer(All)‐β3hPhe‐β3hGlu‐β3hSer(All)‐β3hTyr‐β3hIle‐OH ( 1 ; with allylated βhSer residues in 3‐ and 6‐position), and three tethered β‐peptides 2 – 4 (related to 1 through ring‐closing metathesis) have been synthesized (solid‐phase coupling, Fmoc strategy, on chlorotrityl resin; Scheme). A comparative CD analysis of the tethered β‐peptide 4 and its non‐tethered analogue 1 suggests that helical propensity is significantly enhanced (threefold CD intensity) by a (CH2)4 linker between the β3hSer side chains (Fig. 2). This conclusion is based on the premise that the intensity of the negative Cotton effect near 215 nm in the CD spectra of β3‐peptides represents a measure of ‘helical content’. An NMR analysis in CD3OH of the two β3‐octapeptide derivatives without (i.e., 1 ) and with tether (i.e., 4 ; Tables 1–6, and Figs. 4 and 5) provided structures of a degree of precision (by including the complete set of side chain–side chain and side chain–backbone NOEs) which is unrivaled in β‐peptide NMR‐solution‐structure determination. Comparison of the two structures (Fig. 5) reveals small differences in side‐chain arrangements (separate bundles of the ten lowest‐energy structures of 1 and 4 , Fig. 5, A and B ) with little deviation between the two backbones (superposition of all structures of 1 and 4 , Fig. 5, C ). Thus, the incorporation of a CH2? O? (CH2)4? O? CH2 linker between the backbone of the β3‐amino acids in 3‐ and 6‐position (as in 4 ) does accurately constrain the peptide into a 314‐helix. The NMR analysis, however, does not suggest an increase in the population of a 314‐helical backbone conformation by this linkage. Possible reasons for the discrepancy between the conclusion from the CD spectra and from the NMR analysis are discussed.  相似文献   

16.
To further study the preference of the antiperiplanar (ap) conformation in α‐fluoro‐amide groups, two β‐peptides, 1 and 2 , containing a (2‐F)‐β3hAla and a (2‐F)‐β2hPhe residue, have been synthesized. Their NMR‐solution structures in CD3OH were determined and compared with those of non‐F‐substituted analogs, 3 and 4a . While we have found in a previous investigation (Helv. Chim. Acta 2005 , 88, 266) that a stereospecifically introduced F‐substituent in the central position of a βheptapeptide is capable of ‘breaking’ the 314‐helical structure by enforcing the F? C? C?O ap‐conformation, we could now demonstrate that the same procedure leads to a structure with the unfavorable ca. 90° F? C? C?O dihedral angle, enforced by the 314‐helical folding in a βtridecapeptide (cf. 1 ; Fig. 4). This is interpreted as a consequence of cooperative folding in the longer β‐peptide. A F‐substituent placed in the turn section of a β‐peptidic hairpin turn was shown to be in an ap‐arrangement with respect to the neighboring C?O bond (cf. 2 ; Fig. 7). Analysis of the non‐F‐substituted β‐tetrapeptides (with helix‐preventing configurations of the two central β2/β3‐amino acid residues) provides unusually tight hairpin structural clusters (cf. 3 and 4a ; Figs. 8 and 9). The skeleton of the β‐tetrapeptide H‐(R)β3hVal‐(R)β2hVal‐(R)β3hAla‐(S)β3hPhe‐OH ( 4a ) is proposed as a novel, very simple backbone structure for mimicking α‐peptidic hairpin turns.  相似文献   

17.
β‐Amino acids 1 – 3 with OH and F substituents in the α‐position have been prepared (Scheme) from the natural (S)‐α‐amino acids alanine, valine, and leucine, and incorporated into β‐hexa‐ and β‐heptapeptides 4 – 12 . The peptide syntheses were performed according to a conventional solution strategy (Boc/Bn protection) with fragment coupling. The new β‐peptides with (series a ) and without (series b ) terminal protection were isolated in HPLC‐pure form and characterized by NMR spectroscopy and MALDI mass spectrometry. The chemical properties as well as the patterns of the CD spectra (Figs. 3–5) depend upon constitution (OH, F, F2 substitution) and configuration (l or u) of the amino acid residues, upon the total number of OH and F substituents in the peptide chain, and upon the solvent used (H2O, MeOH, CF3CH2OH, (CF3)2CHOH). No reliable clues regarding the structures can be obtained from these CD spectra. Only a full NMR analysis will be able to answer the questions: a) with which known secondary structures (Figs. 1 and 2) of β‐peptides are the OH and F derivatives compatible? b) Are new secondary structures enforced by the polar and/or H‐bonding backbone substituents? Furthermore, the β‐peptides described here will enable us to study changes in chemical, enzymatic, and metabolic stability, and in physiological properties caused by the heteroatoms.  相似文献   

18.
Model building, difference spectroscopy, and 1H and 13C NMR experiments have been carried out to study the binding of poly(L -Ser) with the polyribonucleotides poly(A) and poly(U) at pH 7.1. Studies have also been carried out with base paired duplexes poly(A)?poly(U). Peak doubling of Cα and carbonyl resonances in the 13C NMR spectrum of poly(L -Ser) in presence of polyribonucleotides is observed. From the chemical shifts and the linewidth, it is concluded that the interaction occurs through hydrogen bonding between the nucleic acid bases and the peptide backbone. In case of poly(A) and poly(U) the hydrogen bonding scheme with peptide backbone is different from that in the base paired poly(A)?poly(U). The possible binding schemes of double stranded DNA and peptide backbone have been investigated using model building and potential energy calculations. The hydrogen bonding schemes discriminate between various base pairs and their sequence. It is concluded that protein backbone can play an important role in protein–nucleic acid recognition schemes.  相似文献   

19.
A remote 4J(F,H) coupling (F? C(α)? C(O)? N? H) of up to 4.2 Hz in α‐fluoro amides with antiperiplanar arrangement of the C? F and the C?O bonds (dihedral angle F? C? C?O ca. 180°) confirms that previous NMR determinations, using the XPLOR‐NIH procedure, of the secondary structures of β‐peptides containing β3hAla(αF) and β3hAla(αF2) residues were correct. In contrast, molecular‐dynamics (MD) simulations, using the GROMOS program with the 45A3 force field, led to an incorrect conclusion about the relative stability of secondary structures of these β‐peptides. The problems encountered in NMR analyses and computations of the structures of backbone‐F‐substituted peptides are briefly discussed.  相似文献   

20.
Chirality is ubiquitous in nature, and homochirality is manifested in many biomolecules. Although β-double helices are rare in peptides and proteins, they consist of alternating L- and D-amino acids. No peptide double helices with homochiral amino acids have been observed. Here, we report chiral β-double helices constructed from γ-peptides consisting of alternating achiral (E)-α,β-unsaturated 4,4-dimethyl γ-amino acids and chiral (E)-α,β-unsaturated γ-amino acids in both single crystals and in solution. The two independent strands of the same peptide intertwine to form a β-double helix structure, and it is stabilized by inter-strand hydrogen bonds. The peptides with chiral (E)-α,β-unsaturated γ-amino acids derived from α-L-amino acids adopt a (P)-β-double helix, whereas peptides consisting of (E)-α,β-unsaturated γ-amino acids derived from α-D-amino acids adopt an (M)-β-double helix conformation. The circular dichroism (CD) signature of the (P) and (M)-β-double helices and the stability of these peptides at higher temperatures were examined. Furthermore, ion transport studies suggested that these peptides transport ions across membranes. Even though the structural analogy suggests that these new β-double helices are structurally different from those of the α-peptide β-double helices, they retain ion transport activity. The results reported here may open new avenues in the design of functional foldamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号