首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a new design strategy for an excited-state intramolecular proton transfer (ESIPT) fluorophore that can be used in acidic media. A photobasic pyridine-centered donor-acceptor-donor-type fluorophore is combined with a basic trialkylamine “strap”. In the presence of an acid, protonation occurs predominantly at the amine moiety in the ground state. A single-crystal X-ray diffraction analysis confirmed the formation of a pre-organized intramolecular hydrogen-bonded structure between the resulting ammonium moiety and the pyridine ring. Upon excitation, the intramolecular charge-transfer transition increases the basicity of the pyridine moiety in the excited state, resulting in proton transfer from the amine to the pyridine moiety. Consequently, the fluorophore takes on a polymethine-dye character in the ESIPT state, which gives rise to significantly red-shifted emission with an increased fluorescence quantum yield.  相似文献   

2.
A one-pot synthesis of bimetallic metal–organic frameworks (Co/Fe-MOFs) was achieved by treating stoichiometric amounts of Fe and Co salts with 2-aminoterephthalic acid (NH2-BDC). Monometallic Fe (catalyst A) and Co (catalyst F) were also prepared along with mixed-metal Fe/Co catalysts (B–E) by changing the Fe/Co ratio. For mixed-metal catalysts (B–E) SEM energy-dispersive X-ray (EDX) analysis confirmed the incorporation of both Fe and Co in the catalysts. However, a spindle-shaped morphology, typically known for the Fe-MIL-88B structure and confirmed by PXRD analysis, was only observed for catalysts A–D. To test the catalytic potential of mixed-metal MOFs, reduction of nitroarenes was selected as a benchmark reaction. Incorporation of Co enhanced the activity of the catalysts compared with the parent NH2-BDC-Fe catalyst. These MOFs were also tested as electrocatalysts for the oxygen evolution reaction (OER) and the best activity was exhibited by mixed-metal Fe/Co-MOF (Fe/Co batch ratio=1). The catalyst provided a current density of 10 mA cm−2 at 410 mV overpotential, which is comparable to the benchmark OER catalyst (i.e., RuO2). Moreover, it showed long-term stability in 1 m KOH. In a third catalytic test, dehydrogenation of sodium borohydride showed high activity (turnover frequency=87 min−1) and hydrogen generation rate (67 L min−1 g−1 catalyst). This is the first example of the synthesis of bimetallic MOFs as multifunctional catalysts particularly for catalytic reduction of nitroarenes and dehydrogenation reactions.  相似文献   

3.
The fabrication of state-of-the-art membranes with customized functions and high efficiency is of great significance, but presents challenges. Emerging metal-organic frameworks (MOFs)/polymer hybrid membranes have provided bright promise as an innovative platform to target multifunctional hybrid materials and devices; this is thanks to their unique properties, which come from three components that are collaboratively enforced. This minireview provides a brief overview of recent progress in the construction of such hybrid membranes, and highlights some of their very important applications in separation, conduction, and sensing.  相似文献   

4.
Metal–organic frameworks (MOFs), as a porous frame material, exhibit considerable electrical conductivity. In recent decades, research on the proton conductivity of MOFs has made gratifying progress. In this review, the designable guest molecules encapsulated into MOFs are summarized and generalized into four types in terms of promoting proton conductive performance, and then recent progress in the promotion of proton conductivity by MOFs encapsulating guest molecules is discussed. The existing challenges and prospects for the development of this strategy for promoting MOFs’ proton conductivity are also listed.  相似文献   

5.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting-edge applications.  相似文献   

6.
Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107 Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107 Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.  相似文献   

7.
The rechargeable lithium-sulfur (Li-S) battery is a promising candidate for the next generation of energy storage technology, owing to the high theoretical capacity, high specific energy density, and low cost of electrode materials. The main drawbacks in the development of long-life Li-S batteries are capacity fading and the sluggish kinetics at the cathode caused by the polysulfides shuttle. These limitations are addressed through the design of novel nanocages containing cobalt phosphide (CoP) nanoparticles embedded in highly porous nitrogen-doped carbon (CoP-N-GC) by thermal annealing of ZIF-67 in a reductive atmosphere followed by a phosphidation step using sodium hypophosphite. The CoP nanoparticles, with large surface area and uniform homogeneous distribution within the N-doped nanocage graphitic carbon, act as electrocatalysts to suppress the shuttle of soluble polysulfides through strong chemical interactions and catalyze the sulfur redox. As a result, the S@CoP-N-GC electrode delivers an extremely high specific capacity of 1410 mA h g−1 at 0.1 C (1 C=1675 mA g−1) with an excellent coulombic efficiency of 99.7 %. Moreover, capacity retention from 864 to 678 mA h g−1 is obtained after 460 cycles with a very low decay rate of 0.046 % per cycle at 0.5 C. Therefore, the combination of the CoP catalyst and polar conductive porous carbon effectively stabilizes the sulfur cathode, enhancing the electrochemical performance and stability of the battery.  相似文献   

8.
The photoinduced dynamic behavior of flexible materials has received considerable attention for potential applications, such as in data storage or as smart optical devices and molecular mechanical actuators. Until now, precisely controlling expansion and contraction with light has remained a challenge. Unraveling the detailed mechanisms of photoinduced structural transformations remains a critical step necessary to understand the molecular architecture necessary for the design of sensitive photomechanical actuators. Herein, a two-dimensional flexible metal–organic framework [Zn2(bdc)2(3-CH3-spy)2]⋅H2O ( Zn2-1 ; H2bdc=1,4-benzenedicaboxylic acid; 3-CH3-spy=3-methylstyrylpyridine) with a positive volumetric thermal expansion coefficient of +78.78×10−6 K−1 is reported. Upon light irradiation at different wavelengths, the MOF underwent a [2+2] cycloaddition, which afforded a family of isomeric, three-dimensional MOFs ( Zn2-2 n , n=a–d) in a single-crystal-to-single-crystal (SCSC) manner. An unprecedented phenomenon, that is, photoinduced nonlinear contraction (PINC), was observed during this conversion. The PINC is caused by conformational changes in the 3-CH3-spy and bdc2− ligands, the bending of metal–ligand bonds, and the local distortion of the paddle-wheel SBUs. The formation of a “wrinkle morphology” on the crystal surface after the photoreaction was observed by AFM. This PINC behavior can broaden the studies on materials expansion and offer a photodriven approach for the future design of supersensitive photomechanical actuators.  相似文献   

9.
Aiming at extending the tagged zinc bipyrazolate metal–organic frameworks (MOFs) family, the ligand 3,3’-diamino-4,4’-bipyrazole ( 3,3’-H2L ) has been synthesized in good yield. The reaction with zinc(II) acetate hydrate led to the related MOF Zn(3,3’-L) . The compound is isostructural with its mono(amino) analogue Zn(BPZNH2) and with Zn(3,5-L) , its isomeric parent built with 3,5-diamino-4,4’-bipyrazole. The textural analysis has unveiled its micro-/mesoporous nature, with a BET area of 463 m2 g−1. Its CO2 adsorption capacity (17.4 wt. % CO2 at pCO2 = 1 bar and T = 298 K) and isosteric heat of adsorption (Qst = 24.8 kJ mol−1) are comparable to that of Zn(3,5-L) . Both Zn(3,3’-L) and Zn(3,5-L) have been tested as heterogeneous catalysts in the reaction of CO2 with the epoxides epichlorohydrin and epibromohydrin to give the corresponding cyclic carbonates at T = 393 K and pCO2 = 5 bar under solvent- and co-catalyst-free conditions. In general, the conversions recorded are higher than those found for Zn(BPZNH2), proving that the insertion of an extra amino tag in the pores is beneficial for the epoxidation catalysis. The best catalytic match has been observed for the Zn(3,5-L) /epichlorohydrin couple, with 64 % conversion and a TOF of 5.3 mmol(carbonate) (mmolZn)−1 h−1. To gain better insights on the MOF-epoxide interaction, the crystal structure of the [epibromohydrin@ Zn(3,3’-L) ] adduct has been solved, confirming the existence of Br⋅⋅⋅(H)−N non-bonding interactions. To our knowledge, this study represents the first structural determination of a [epibromohydrin@MOF] adduct.  相似文献   

10.
Two new rod-packing metal–organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+, leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.  相似文献   

11.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly-spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution-based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

12.
The grafting of imidazole species onto coordinatively unsaturated sites within metal–organic framework MIL-101(Cr) enables enhanced CO2 capture in close proximity to catalytic sites. The subsequent combination of CO2 and epoxide binding sites, as shown through theoretical findings, significantly improves the rate of cyclic carbonate formation, producing a highly active CO2 utilization catalyst. An array of spectroscopic investigations, in combination with theoretical calculations reveal the nature of the active sites and associated catalytic mechanism which validates the careful design of the hybrid MIL-101(Cr).  相似文献   

13.
The separation of acetylene from ethylene is of paramount importance in the purification of chemical feedstocks for industrial manufacturing. Herein, an isostructural series of gallate-based metal–organic frameworks (MOFs), M-gallate (M=Ni, Mg, Co), featuring three-dimensionally interconnected zigzag channels, the aperture size of which can be finely tuned within 0.3 Å by metal replacement. Controlling the aperture size of M-gallate materials slightly from 3.69 down to 3.47 Å could result in a dramatic enhancement of C2H2/C2H4 separation performance. As the smallest radius among the studied metal ions, Ni-gallate exhibits the best C2H2/C2H4 adsorption separation performance owing to the strongest confinement effect, ranking after the state-of-the-art UTSA-200a with a C2H4 productivity of 85.6 mol L−1 from 1:99 C2H2/C2H4 mixture. The isostructural gallate-based MOFs, readily synthesized from inexpensive gallic acid, are demonstrated to be a new top-performing porous material for highly efficient adsorption of C2H2 from C2H4.  相似文献   

14.
Modification of the external surfaces of metal–organic frameworks offers a new level of control over their adsorption behavior. It was previously shown that capping of MOFs with ethylenediamine (EDA) can effectively retain small gaseous molecules at room temperature. Reported here is a temperature-induced variation in the capping-layer gate-opening mechanism through a combination of in situ infared experiments and ab initio simulations of the capping layer. An atypical acceleration and increase in the loading of weakly adsorbed molecules upon raising the temperature above room temperature is observed. These findings show the discovery of novel temperature-dependent kinetics that goes beyond standard kinetics and suggest a new avenue for tailoring selective adsorption by thermally tuning the surface barrier.  相似文献   

15.
A pyrene-based metal-organic framework (MOF) SION-8 captured iodine (I2) vapor with a capacity of 460 and 250 mg g−1MOF at room temperature and 75 °C, respectively. Single-crystal X-ray diffraction analysis and van-der-Waals-corrected density functional theory calculations confirmed the presence of I2 molecules within the pores of SION-8 and their interaction with the pyrene-based ligands. The I2–pyrene interactions in the I2-loaded SION-8 led to a 104-fold increase of its electrical conductivity compared to the bare SION-8 . Upon adsorption, ≥95 % of I2 molecules were incarcerated and could not be washed out, signifying the potential of SION-8 towards the permanent capture of radioactive I2 at room temperature.  相似文献   

16.
We report the dual postsynthetic modification (PSM) of a metal–organic framework (MOF) involving the microscopic conversion of C−H bonds into C−C bonds and the mesoscopic introduction of hierarchical porosity. MOF crystals underwent single-crystal-to-single-crystal transformations during the electrophilic aromatic substitution of Co2(m-DOBDC) (m-DOBDC4−=4,6-dioxo-1,3-benzenedicarboxylate) with alkyl halides and formaldehyde. The steric hindrance caused by the proximity of the introduced functional groups to the coordination bonds reduced bond stability and facilitated the transformation into hierarchically porous mesostructures by etching with in situ generated protons (hydroniums) and halides. The numerous defect sites in the mesostructural MOFs are potential water-sorption sites. However, since the introduced functional groups are close to the main adsorption sites, even methyl groups are able to considerably decrease water adsorption, whereas hydroxy groups increase adsorption at low vapor pressures.  相似文献   

17.
The structural characterization of sublayer surfaces of MIL-101 is reported by low-dose spherical aberration-corrected high-resolution transmission electron microscopy (HRTEM). The state-of-the-art microscopy directly images atomic/molecular configurations in thin crystals from charge density projections, and uncovers the structures of sublayer surfaces and their evolution to stable surfaces regulated by inorganic Cr33-O) trimers. This study provides compelling evidence of metal–organic frameworks (MOFs) crystal growth via the assembly of sublayer surfaces and has important implications in understanding the crystal growth and surface-related properties of MOFs.  相似文献   

18.
We demonstrate direct evidence of photoinduced through-space intervalence charge transfer (IVCT) between two cofacially arranged redox-active pairs in metal–organic frameworks and their dynamic variation with their molecular separation. Two homologous MOFs [Co2(NDC)2(DPTTZ)2]. DPTTZ. DMF, 1 and [Co2(BDC)2(DPTTZ)2]. DMF, 2 (where NDC=naphthalene dicarboxylate, BDC=benzene dicarboxylate, DPTTZ=N, N′-di(4-pyridyl)thiazolo-[5,4-d]thiazole, DMF=N, N′-dimethyl formamide) are considered for this, whose intra-dimer distance of redox-active DPTTZ ligands differs ca. 1 Å from one system to another. Spectroelectrochemical study detects the formation of IVCT band at the NIR region between cofacially oriented DPTTZ molecules in both MOFs. Transient spectroscopy shows faster charge separation as well as charge recombination when intra-dimer distance is lesser (in MOF 2 ) due to stronger electronic coupling. We quantify the extent of IVCT by charge transfer integral calculation; and also by optical pump terahertz probe spectroscopy, where MOF 2 shows three times higher carrier mobility due to lesser inter-DPTTZ distance than MOF 1 . These findings reveal a more localized aspect of through-space IVCT between cofacially organized redox-active pair in a three-dimensional framework.  相似文献   

19.
The layer-by-layer (LbL) method is a well-established method for the growth of surface-attached metal–organic frameworks (SURMOFs). Various experimental parameters, such as surface functionalization or temperature, have been identified as essential in the past. In this study, inspired by these recent insights regarding the LbL SURMOF growth mechanism, the impact of reactant solutions concentration on LbL growth of the Cu2(F4bdc)2(dabco) SURMOF (F4bdc2−=tetrafluorobenzene-1,4-dicarboxylate and dabco=1,4-diazabicyclo-[2.2.2]octane) in situ by using quartz-crystal microbalance and ex situ with a combination of spectroscopic, diffraction and microscopy techniques was investigated. It was found that number, size, and morphology of MOF crystallites are strongly influenced by the reagent concentration. By adjusting the interplay of nucleation and growth, we were able to produce densely packed, yet thin films, which are highly desired for a variety of SURMOF applications.  相似文献   

20.
The blood–brain barrier (BBB) restricts access to the brain of more than 98 % of therapeutic agents and is largely responsible for treatment failure of glioblastoma multiforme (GBM). Therefore, it is of great importance to develop a safe and efficient strategy for more effective drug delivery across the BBB into the brain. Inspired by the extraordinary capability of rabies virus (RABV) to enter the central nervous system, we report the development and evaluation of the metal–organic framework-based nanocarrier MILB@LR, which closely mimicked both the bullet-shape structure and surface functions of natural RABV. MILB@LR benefited from a more comprehensive RABV-mimic strategy than mimicking individual features of RABV and exhibited significantly enhanced BBB penetration and brain tumor targeting. MILB@LR also displayed superior inhibition of tumor growth when loaded with oxaliplatin. The results demonstrated that MILB@LR may be valuable for GBM targeting and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号