首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new transition‐metal‐containing Zintl phase, Eu10Cd6Bi12, was synthesized by combining the elements in excess molten Cd. Single‐crystal X‐ray diffraction studies indicated that this compound crystallizes in the orthorhombic space group Cmmm (No. 65) with a=7.840(2), b=24.060(7), and c=4.7809(14) Å. The crystal structure of Eu10Cd6Bi12 can be viewed as a stacking of a series of [Cd6Bi12] double layers, which are arranged alternately along the b axial direction. The layers are composed of corner‐ and edge‐shared CdBi4 tetrahedra, a common feature in the crystal chemistry of many transition‐metal Zintl phases. Electronic‐band‐structure calculations confirm the closed‐shell configuration of all constituent elements and corroborate the electron count inferred by the Zintl formalism, that is, [Eu2+]10[Cd2+]6[Bi3?]8[Bi2?]4. Magnetic‐susceptibility measurements confirm the divalency of europium and show the existence of a long‐range antiferromagnetic order of the Eu spins below 12.3 K.  相似文献   

2.
We report the synthesis of Aurivillius-type phases incorporating magnetic M4+ cations (M=Mn, Ru, Ir), based on the substitution of M4+ for Ti4+ in Bi2Sr2(Nb,Ta)2TiO12. The key to incorporating these magnetic transition metal cations appears to be the partial substitution of Sr2+ for Bi3+ in the α-PbO-type layer of the Aurivillius phase, leading to a concomitant decrease in the M4+ content; i.e., the composition of the prepared compounds was Bi2−xSr2+x(Nb,Ta)2+xM1−xO12, x≈0.5. These compounds only exist over a narrow range of x, between an apparent minimum (x≈0.4) Sr2+ content in the α-PbO-type [Bi2O2] layer required for Aurivillius phases to form with magnetic M4+ cations, and an apparent maximum (x≈0.6) Sr2+ substitution in this [Bi2O2] layer. Rietveld-refinement of synchrotron X-ray powder diffraction data making use of anomalous dispersion at the Nb and Ru K edges show that the overwhelming majority of the incorporated M cations occupy the central of the three MO6 octahedral layers in the perovskite-type block. Magnetic susceptibility measurements are presented and discussed in the context of the potential for multiferroic (magnetoelectric) properties in these materials.  相似文献   

3.
A group of three-layered Aurivillius compounds with composition Bi2A2TiM2O12, where A?=?Ca, Sr, Ba and M?=?Nb and Ta, have been synthesized as nanoscale powders using two variants of the complex polymerization method. A new modified method is presented that yields single phase powders using reaction temperatures as low as 700?°C and accommodates a wide range of chemical substitutions. The resulting crystallites have dimensions below 100?nm and surface area ~10?m2/g. In situ analysis of the decomposition of the polymeric precursor shows that the polymer yields a three-phase mixture consisting of Bi2A2TiM2O12 and the metastable ??- and ??-polymorphs of Bi2O3 upon heating under flowing air. Full kinetics analysis of a 2-step solid state synthesis method was used to demonstrate that the crystallization of ?? Bi2O3 in the sol?Cgel method greatly accelerates the conversion to the Aurivillius phase. The fluorite structure of ?? Bi2O3 is the same as that of the [Bi2O2]2+ layer in the Aurivillius phase, facilitating rapid and low-temperature crystallization of the Aurivillius phase from the ?? Bi2O3 template.  相似文献   

4.
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi4Ti4O15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A21am. For the BaBi4Ti4O15 phase, only a weak variation with respect to the F2mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [M2O2] slabs is confirmed in agreement with the previous works but specific Ba2+ and Bi3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.  相似文献   

5.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

6.
Computer modelling techniques have been used to investigate the defect and oxygen transport properties of the Aurivillius phase Bi4Ti3O12. A range of cation dopant substitutions has been considered including the incorporation of trivalent ions (M3+=Al, Ga and In). The substitution of In3+ onto the Bi site in the [Bi2O2] layer is predicted to be the most favourable. The calculations suggest that lanthanide (Ln3+) doping at the dilute limit preferentially occurs in the [Bi2O2] layer, with probable distribution over both the [Bi2O2] and the perovskite A-site at higher dopant levels. It is predicted that the reduction process involving Ti3+ and oxygen vacancy formation is energetically favourable. The energetics of oxide vacancy migration between various oxygen sites in the structure have been investigated.  相似文献   

7.
The compound Bi3W2O10.5 was synthesized by the solid-state technique from Bi2O3 and WO3 in stoichiometric quantities. Single crystals were grown by the melt-cooling technique and the crystal structure was solved in the tetragonalI4/m space group witha = 3.839 (1) ?,c = 16.382 (5) ?,V = 241.4 (1) ?3,Z = 4 and was refined to anR index of 0.0672. The structure represents a modification of the Aurivillius phase and consists of [Bi2O2]2+ units separated by WO8 polyhedra. a.c. impedance studies indicate oxide ion conductivity of 2.91 10−5 Scm−1 at 600°C. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

8.
A low‐temperature topochemical reduction strategy is used herein to prepare unconventional phosphors with luminescence covering the biological and/or telecommunications optical windows. This approach is demonstrated by using BiIII‐doped Y2O3 (Y2?xBixO3) as a model system. Experimental results suggest that topochemical treatment of Y2?xBixO3 using CaH2 creates randomly distributed oxygen vacancies in the matrix, resulting in the change of the oxidation states of Bi to lower oxidation states. The change of the Bi coordination environments from the [BiO6] octahedra in Y2?xBixO3 to the oxygen‐deficient [BiO6?z] polyhedra in reduced phases leads to a shift of the emission maximum from the visible to the near‐infrared region. The generality of this approach was further demonstrated with other phosphors. Our findings suggest that this strategy can be used to explore Bi‐doped or other classes of luminescent systems, thus opening up new avenues to develop novel optical materials.  相似文献   

9.
The crystal structure of the Aurivillius phase Bi5TiNbWO15 has been analyzed in detail using powder X-ray and neutron diffraction. The structure can be described as a regular intergrowth of alternating single and double perovskite-like layers sandwiched between fluorite-like bismuth oxide layers, such that the layer sequence is … [WO4]-[Bi2O2]-[BiTiNbO7]-[Bi2O2] …. There is complete ordering of tungsten within the B sites of the single perovskite layer, so that the structure can be described as a direct intergrowth of the ‘component’ Aurivillius phases Bi2WO6 and Bi3TiNbO9. At 25 °C the structure adopts the polar orthorhombic space group I2cm, , , .  相似文献   

10.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

11.
A comprehensive study unveiling the impact of heterovalent doping with Bi3+ on the structural, semiconductive, and photoluminescent properties of a single crystal of lead halide perovskites (CH3NH3PbBr3) is presented. As indicated by single-crystal XRD, a perfect cubic structure in Bi3+-doped CH3NH3PbBr3 crystals is maintained in association with a slight lattice contraction. Time-resolved and power-dependent photoluminescence (PL) spectroscopy illustrates a progressively quenched PL of visible emission, alongside the appearance of a new PL signal in the near-infrared (NIR) regime, which is likely to be due to energy transfer to the Bi sites. These optical characteristics indicate the role of Bi3+ dopants as nonradiative recombination centers, which explains the observed transition from bimolecular recombination in pristine CH3NH3PbBr3 to a dominant trap-assisted monomolecular recombination with Bi3+ doping. Electrically, it is found that the mobility in pristine perovskite crystals can be boosted with a low Bi3+ concentration, which may be related to a trap-filling mechanism. Aided by temperature (T)-dependent measurements, two temperature regimes are observed in association with different activation energies (Ea) for electrical conductivity. The reduction of Ea at lower T may be ascribed to suppression of ionic conduction induced by doping. The modified electrical properties and NIR emission with the control of Bi3+ concentration shed light on the opportunity to apply heterovalent doping of perovskite single crystals for NIR optoelectronic applications.  相似文献   

12.
Iron oxides, oxyhydroxydes and oxycarbonates derived from the layered Ruddlesden‐Popper (RP) structure form a large family of layered compounds. Besides the classical RP oxides Srn+1FenO3n+1, single intergrowths with the generic formulation (A,Sr)n+2FenO3n+2 and (A,Sr)n+3FenO3n+3 (A = Tl, Pb, Bi…) can be generated by increasing the multiplicity of the rock salt layers, and multiple intergrowths of these single intergrowths can be synthesized. Starting from oxygen deficient RP oxides such as n = 3 member Sr3NdFe3O9?δ, oxyhydroxydes hydrates and oxyhydroxydes such as Sr3NdFe3O7.5(OH)2·H2O and Sr3NdFe3O7.5(OH)2 can be created topotactically. Carbonate groups can also replace FeO6 octahedra in the n = 3 member Sr4Fe3O10, leading to layered oxycarbonates Sr4Fe3?x(CO3)xO10?4x with 0 < × ≤ 1. Shearing mechanism applied transversally to the layers allows collapsed structures to be generated such as the [Bi2Sr3Fe2O9]n [Bi4Sr6Fe2O16] family and the ferrite Bi13Ba2Sr25Fe13O66. Finally the replacement of rock salt SrO layers in the intergrowth Sr2FeO4 allows a new series of modulated structures [Sr8Fe12O26]·[Sr3Fe2O6]n to be generated, built up of layers of FeO5 bipyramids and tetragonal pyramids intergrown with perovskite layers.  相似文献   

13.
The first silver bismuth borate, AgBi2B5O11 (silver dibismuth pentaborate), has been prepared via glass crystallization in the Ag2O–Bi2O3–B2O3 system and characterized by single‐crystal X‐ray diffraction. Its structure is derived from that of centrosymmetric Bi3B5O12 by ordered substitution of one Bi3+ ion for Ag+, which results in the disappearance of the mirror plane and inversion centre. Second harmonic generation (SHG) measurements confirm the acentric crystal structure. It is formed by [Bi2B5O11] layers stretched along c and comprised of vertex‐sharing B5O10 and BiO3 groups which incorporate the Ag+ cations. The new compound was characterized by thermal analysis, high‐temperature powder X‐ray diffraction, and vibrational and UV–Vis–NIR (near infrared) spectroscopy. Its thermal expansion is strongly anisotropic due to the presence of rigid B5O10 groups aligned in a parallel manner. The minimal value is observed along their axis [parallel to c, αc = 3.1 (1) × 10?6 K?1], while maximal values are observed in the ab plane [αa = 20.4 (2) and αb = 7.8 (2) × 10?6 K?1]. Upon heating, AgBi2B5O11 starts to decay above 684 K due to partial reduction of silver; incongruent melting is observed at 861 K. According to density functional theory (DFT) band‐structure calculations, the new compound is a semiconductor with an indirect energy gap of 3.57 eV, which agrees with the experimental data (absorption onset at 380 nm).  相似文献   

14.
Nanoparticles of the Aurivillius phase La-substituted BTO (Bi4−xLaxTi3O12, with x=0.75) were obtained through a chemical lithiation process. They have been characterised by X-ray diffraction and transmission electron microscopy (diffraction and imaging at high resolution). The defect-free particles are platelet-shaped with the c large axis perpendicular to the plane. From high-resolution images, it is clear that the delamination process occurs at the level of the (Bi2O2)2+ intermediate layer and is destructive for this layer. The smallest thickness measured corresponds to one cell parameter (3.3 nm) but a large range of thicknesses have been observed: this suggests that the lithium insertion does not take place in all (Bi2O2)2+ layers, despite a large excess of lithium and a long reaction time. This is confirmed by ICP analysis, which leads to a formula Li0.99Bi3.25La0.77Ti3.00O12 for the lithiated compound. This behaviour towards lithium intercalation differs from those observed with BTO in literature, where lithium insertion is reported as occurring in every (Bi2O2)2+ layer. Possible explanations for this difference are advanced based on microstructural and structural considerations.  相似文献   

15.
综合ZnO-Al2O3-SiO2系和锗酸盐玻璃陶瓷的优点,采用熔融-晶化法首次制备了Ho3+/Yb3+共掺以ZnAl2O4为主晶相的ZnO-Al2O3-GeO2-SiO2系玻璃陶瓷。因[GeO4]四面体和[SiO4]四面体都是玻璃网络形成体,讨论了GeO2取代SiO2对玻璃陶瓷样品硬度及发光性能的影响,最终确定GeO2的取代量为10.55%(w/w)时,玻璃陶瓷综合性能最佳。在980 nm泵浦光的激发下,发现强的绿色(546 nm)和弱的红色(650 nm)上转换发光,并研究了不同Ho3+/Yb3+掺杂比对样品上转换发光的影响,最终结果表明当Ho3+/Yb3+掺杂比为1:11(n/n)时样品荧光强度最强,在绿色上转换发光材料方面具有潜在的应用。  相似文献   

16.
Synthesis Pb1‐xBi4+xTi4‐xMnxO15 compounds (0 ≤ × ≤ 1) were carried out by molten salts method using eutectic mixture of Na2SO4/K2SO4 salts (1:1 molar ratio) as the flux. The samples were characterized by X‐ray powder diffraction and refined by Le Bail method using Rietica program. The refinement results revealed that the compounds with the composition 0 ≤ x ≤ 0.6 formed Aurivillius phase with the space group A21am while the other composition (x ≥ 0.8) showed another phase beside A21am. The ratio b/a of the lattices constants for all the samples are larger than 1 indicating the direction of the orthorhombic along the b axis of their cells. The lattice parameters and volume of the unit cells decrease as the Mn content increasing from x = 0 to 0.6, for x ≥ 0.8 a second phase were observed. The morphologies of Pb1‐xBi4+xTi4‐xMnxO15 samples were observed by SEM and show plate‐like aggregate crystals, typical of layered compounds belonging to the Aurivillius phase.  相似文献   

17.
Three new bismuth oxyhalides BaPbBi3Nb2O11X (X = Cl, Br, I), including the first perovskite bismuth oxyiodide, were prepared by ceramic route. Their crystal structure is formed by intergrowth of Sillén (PbBiO2X) and Aurivillius (BaBi2Nb2O9) phases. The results of Rietveld refinements show that the peculiarities of the building blocks (in particular, the distribution of Ba2+ and Bi3+) remain intact upon formation of the intergrowth structure. The Ba2+ cations prefer pure-oxygen to mixed oxygen-halogen environment which can be explained on the basis of bond valence method.  相似文献   

18.
The electronic structure of compounds from the family of Aurivillius phases of the general formula Bi2O2[An−1BnO3n+1], where n is the number of perovskite layers, was calculated by the ab initio LMTO-ASA method. For compounds with B=Nb, Ti; A=Ca, Sr, Ba, Bi, and n=1, 2, variations of the electronic structure and properties depending on the number of perovskite units and on the varieties of A and B cations were studied. Effects of vacancy formation in the Bi2O2 layers and metal-oxygen planes are considered. The instability of Bi2NbO6 is explained, and favorable positions for oxygen replacement by fluorine are found. The possibility of superconductivity in these compounds is considered. Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences. Translated fromZhurnal Struktumoi Khimii, Vol. 37, No. 3, pp. 471–478, May–June, 1996.  相似文献   

19.
We show that the substitution of lanthanum by neodymium, whose oxide melts at a temperature 500°C lower than La2O3, appreciably facilitates the synthesis of 123 phases with their Cu(1) positions fully or selectively substituted by magnesium. 123 phases with unit cells doubled in plane ab (phases “336”) and with compositions close to Ce2(La1.4Nd2Ba0.6){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5498(5) nm, c = 1.6425(8) nm), and Ce2(La1.7Nd2K0.3){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5498(5) nm, c = 1.6488(8) nm), and Ce2(Nd3.4Ba0.6){ Cu 3.4 2+ Cu 0.6 3+ } [Mg2]O16 (a = b = 0.5474(5) nm, c = 1.6425 nm), where the parentheses indicate the Ba positions, the braces indicate the Cu(2) positions, and the brackets indicate the Cu(1) positions, were synthesized using modified nitrate technology at 810°C in flowing oxygen. The existence of Cu3+ in the Cu(2) positions endows the phases with electrical conductivity. The conductivity versus temperature curves show the semiconductor trend. The samples do not experience superconducting transitions up to 60 K.  相似文献   

20.
The local environments and dynamics of hydrogen atoms in five samples of protonated forms of ion-exchangeable layered perovskites, Dion-Jacobson-type H[LaNb2O7] and H[LaTa2O7], Ruddlesden-Popper-type H2[SrTa2O7] and H2[La2Ti3O10], and H1.8[(Sr0.8Bi0.2)Ta2O7] derived from an Aurivillius phase, Bi2Sr2Ta2O9, have been investigated by solid-state 1H nuclear magnetic resonance spectroscopy (NMR). Solid-state 1H NMR with a magic-angle spinning technique conducted at room temperature reveals that the mean electron densities around the 1H nuclei in these protonated forms are relatively low, and that they decrease in the following order: H1.8[(Sr0.8Bi0.2)Ta2O7]>H[LaNb2O7]>H2[SrTa2O7]>H[LaTa2O7]>H2[La2Ti3O10]. The temperature-dependent solid-state 1H broad-line NMR spectra measured at 140-400 K reveal a decrease in the signal width for all of these five samples upon heating due to motional narrowing. The NMR spectra of H[LaNb2O7] and H[LaTa2O7] are different from the other three protonated forms due to the weaker dipole-dipole interactions at low temperatures and lower mobility of the hydrogen atoms at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号