首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust dithiocarbamate tether allows novel gadolinium units based on DOTAGA (q=1) to be attached to the surface of gold nanoparticles (2.6–4.1 nm diameter) along with functional units offering biocompatibility, targeting and photodynamic therapy. A dramatic increase in relaxivity (r1) per Gd unit from 5.01 mm −1 s−1 in unbound form to 31.68 mm −1 s−1 (10 MHz, 37 °C) is observed when immobilised on the surface due to restricted rotation and enhanced rigidity of the Gd complex on the nanoparticle surface. The single-step synthetic route provides a straightforward and versatile way of preparing multifunctional gold nanoparticles, including examples with conjugated zinc–tetraphenylporphyrin photosensitizers. The lack of toxicity of these materials (MTT assays) is transformed on irradiation of HeLa cells for 30 minutes (PDT), leading to 75 % cell death. In addition to passive targeting, the inclusion of units capable of actively targeting overexpressed folate receptors illustrates the potential of these assemblies as targeted theranostic agents.  相似文献   

2.
We report on the redox behaviour of the microperoxidase‐11 (MP‐11) which has been electrostatically immobilized in a matrix of chitosan‐embedded gold nanoparticles on the surface of a glassy carbon electrode. MP‐11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP‐11 at high scan rate is between 350±50 pmol cm?2, which reflects a multilayer process. The formal potential (E°′) of MP‐11 in the gold nanoparticles‐chitosan film was estimated to be ?(267.7±2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (ks) starts at 1.21 s?1 and levels off at 6.45 s?1 in the scan rate range from 0.1 to 2.0 V s?1. Oxidation and reduction of MP‐11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP‐11.  相似文献   

3.
A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mm ?1Fes?1 at 60 MHz, which is nearly double the r2 relaxivity of Sinerem®.  相似文献   

4.
Direct electron transfer of immobilized superoxide dismutase (Cu, Zn‐SOD) onto silicon carbide (SiC) nanoparticles displays a pair of well defined and nearly reversible redox peaks with formal potential (′) of −0.03 V in pH 7.4. The heterogeneous electron transfer rate constant (ks) and surface coverage (Γ) of immobilized SOD are 11.0±0.4 s−1 and 1.42×10−11 mol cm−2. Biosensor shows fast amperometric response (3s) with sensitivity and detection limit of 1.416 nA μM−1, 1.66 μM, and 1.375 nA μM−1, 2.1 μM for cathodically or anodically detection of superoxide, respectively. This biosensor also exhibits good stability, reproducibility and long life‐time.  相似文献   

5.
Two amphiphilic mono‐ and dimeric GdAAZTA‐like chelates composed of stable bis‐aquo GdIII complexes (q=2) linked to one (for the monomer) or two dodecyl aliphatic chains (for the dimer) were synthesized. Both chelates showed high relaxivity when incorporated into the lipid bilayer of liposomes or after interaction with human serum albumin (HSA). The ditopic complex shows a significantly decreased internal motion relative to the monomeric complex, associated with an enhanced relaxivity (r1≈60 mm ?1 s?1, at 30 MHz and 310 K). The presence of two metal‐bound water molecules in fast exchange and the restricted rotational freedom make the relaxivity of this system the highest measured for paramagnetic liposomes.  相似文献   

6.
《印度化学会志》2021,98(10):100163
With co-precipitation method we successfully synthesized an aqueous dispersible, superparamagnetic manganese ferrite nanoparticles at relatively low temperature (190 ​°C). This material shows potential application as T2 MRI contrast agent. Cost-effective and less toxic manganese (II) chloride (MnCl2·4H2O) and iron (III) chloride hexahydrate (FeCl3·6H2O) were used as precursors and 2-[2-(2-Hydroxyethoxy)ethoxy] ethanol (TEG) were utilized as solvent which served as stabilizer and provided a reduction system. The mean diameter of these nanoparticles is about 7 ​nm. Its saturation magnetization (Ms) and relaxivity value (r2) are as high as 46 emu/g and 593.9 ​mM−1s−1 respectively. In vitro cell study demonstrated pancreatic cancer cells could keep viable when the manganese ferrite nanoparticles concentration reached up to 50 ​μg/mL.  相似文献   

7.
The search for more biocompatible alternatives to Gd3+-based MRI agents, and the interest in 52Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+, high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm −1 s−1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1. Additionally, L1 could be radiolabeled with 52Mn and the complex revealed good stability in biological media.  相似文献   

8.
《Electroanalysis》2017,29(12):2698-2707
A cholesterol biosensor based on cholesterol oxidase‐poly(diallyldimethylammonium chloride)‐carbon nanotubes‐nickel ferrite nanoparticles (ChOx‐PDDA‐CNTs‐NiFe2O4NPs) solution is easily fabricated by using a single dropping step on a glassy carbon electrode (GCE) surface. This technique is an alternative way to reduce complexity, cost and time to produce the biosensor. The uniformly dispersed materials on the electrode surface enhance the catalytic reaction of cholesterol oxidase and electron transfer from the oxidation of hydrogen peroxide in the system. The nickel ferrite nanoparticles were synthesized by co‐precipitation and calcination at various temperatures. These nanoparticles were then characterized using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and X‐ray diffraction (XRD). The synthesized material calcined at 700 °C was well defined and presented the octahedral metal stretching with cubic NiFe2O4NPs phase. In cyclic voltammetric study, the ChOx‐PDDA‐CNTs‐NiFe2O4NPs/GCE showed 0.43 s−1 charge transfer rate constant (K s), 7.79×10−6 cm2 s−1 diffusion coefficient value (D ), 0.13 mm2 electroactive surface area (A e) and 3.58×10−8 mol cm−2 surface concentration ( ). This modified electrode exhibits stability in term of percent relative standard deviation (%RSD=0.62 %, n=10), reproducibility (%RSD=0.81, n=10), high sensitivity (25.76 nA per mg L−1 cm−2), linearity from 1 to 5,000 mg L−1 (R2=0.998) with a low detection limit (0.50 mg L−1). Its Michaelis‐Menten constant (K m) was 0.14 mM with 0.92 μA maximum current (I max) and demonstrated good selectivity without the effects of electroactive species such as ascorbic acid, glucose and uric acid. The cholesterol biosensor was successfully applied to determine cholesterol levels in human blood samples, showing promise due to its simplicity and availability.  相似文献   

9.
《中国化学快报》2023,34(6):107685
It is greatly desired to develop novel gadolinium-based contrast agents (GBCAs) as improved platforms for magnetic resonance imaging (MRI). Herein, we report the syntheses of a series of nonionic cyclen-based GBCAs by precisely tuning carboxylate group on DO3A-pyridine scaffold. [Gd-DO3A-4cp] is isolated which adopts an octadentate coordination mode with a free carboxylate group at 4-position of pyridine. It shows the r1 relaxivity of 5.8 (mmol/L)−1 s-1 (3 T, 25 °C), which is 75% higher than 3.3 (mmol/L)−1 s-1 of the clinic used [Gd-DOTA]. The possible mechanisms behind the enhanced relaxivity are investigated and proposed by structure-property relationship studies. After validation of low cytotoxicity and considerable kinetic inertness, in-vivo studies are further examined, demonstrating its good MRI performance, biodistribution as well as the way of excretion.  相似文献   

10.
《中国化学》2017,35(8):1305-1310
A novel biosensor was fabricated based on the immobilization of tyrosinase and N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles onto the surface of the glassy carbon electrode via the film forming by chitosan. The NAC‐AuNPs (N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles) with the average size of 3.4 nm had much higher specific surface area and good biocompatibility, which were favorable for increasing the immobilization amount of enzyme, retaining the catalytic activity of enzyme and facilitating the fast electron transfer. The prepared biosensor exhibited suitable amperometric responses at −0.2 V for phenolic compounds vs. saturated calomel electrode. The parameters of influencing on the working electrode such as pH , temperature, working potential were investigated. Under optimum conditions, the biosensor was applied to detect catechol with a linear range of 1.0 × 10−7 to 6.0 × 10−5 mol•L−1 , and the detection limit of 5.0 × 10−8 mol•L−1 (S /N =3). The stability and selectivity of the proposed biosensor were also evaluated.  相似文献   

11.
Novel photochromic amphipathic molecules, KMR‐AZn (Gd‐DTPA‐AZCn), composed of hydrophilic Gd‐DTPA and hydrophobic alkylated azobenzene were prepared. In aqueous environment, KMR‐AZn indicated self‐assembly. The resulting aggregates were demonstrated to be able to include a hydrophobic drug substitute (hydrophobic fluorescent dye) into the internal core, and to release the included compound upon photoirradiation within 10 min through the influence of azobenzene photoisomerization. This micellar MRI contrast agent exhibited three‐ to four‐fold higher r1 relaxivity (r1 = 14.5–16.5 mm ?1 s?1, 0.47 T at 40°C) than the widely applied small molecule contrast agent Gd‐DTPA (Magnevist®r1 = 4.1 mm ?1 s?1, 0.47 T at 40°C). This dual functionality of encapsulated compound release and increased MR imaging contrast indicates that KMR‐AZn is a potential candidate for application as a lipid‐based MRI‐traceable drug carrier.  相似文献   

12.
Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm −1 s−1 for the C2 derivative and 9.4 mm −1 s−1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm −1 s−1). Variable-temperature (VT)-T2 17O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.  相似文献   

13.
In this work, a simple, fast and dry method for the fabrication of a thermochromic product with a high load of VO2(M1) consisting of the controlled heat treatment of pure vanadium nanoparticles in air is presented. After a complete design of experiments, it is concluded that the most direct way to attain the maximum transformation of V into VO2(M1) consists of one cycle with a fast heating ramp of 42 °C s−1, followed by keeping 700 °C for 530–600 seconds, and a subsequent cooling at 0.05 °C s−1. Careful examination of these results lead to a second optimum, even more suitable for industrial production (quicker and less energy-intensive because of its lower temperatures and shorter times), consisting of subjecting V to two consecutive cycles of temperatures and times (625 °C for 5 minutes) with similar preheating (42 °C s−1) but a much faster postcooling (∼ 8 °C s−1). These green reactions only use the power for heating a tube open to atmosphere and a vanadium precursor; without assistance of reactive gases or catalysts, and no special vacuum or pressure requirements. The best products present similar thermochromic properties but higher thermal stability than commercial VO2 particles. These methods can be combined with VO2 doping.  相似文献   

14.
Three‐component mixtures (diblock copolymer/metal ion/oligoligand) can assemble into micellar particles owing to a combination of supramolecular polymerization and electrostatic complex formation. Such particles cover a large range of compositions, but the electrostatic forces keeping them together make them rather susceptible to disintegration by added salt. Now it is shown how the salt stability can be tuned continuously by employing both a bis‐ligand and a tris‐ligand, and varying the ratio of these in the mixture. For magnetic ions such as MnII and FeIII, the choice of the multiligand also affects the ion/water interaction and, hence, the magnetic relaxivity. As an example, MnII‐based nanoparticles with a very high longitudinal relaxivity (10.8 mm −1 s−1) were investigated that are not only biocompatible but also feature strong contrast enhancement in target organs (liver, kidney), as shown by T1‐weighted in vivo magnetic resonance imaging (MRI).  相似文献   

15.
Functionalised MCM‐41 mesoporous silica nanoparticles were used as carriers of GdIII complexes for the development of nanosized magnetic resonance imaging contrast agents. Three GdIII complexes based on the 1,4,7,10‐tetraazacyclododecane scaffold (DOTA; monoamide‐, DOTA‐ and DO3A‐like complexes) with distinct structural and magnetic properties were anchored on the silica nanoparticles functionalised with NH2 groups. The interaction between GdIII chelates and surface functional groups markedly influenced the relaxometric properties of the hybrid materials, and were deeply modified passing from ionic ? NH3+ to neutral amides. A complete study of the structural, textural and surface properties together with a full 1H relaxometric characterisation of these hybrid materials before and after surface modification was carried out. Particularly for the anionic complex 2 attached to MCM‐41, an impressive increase in relaxivity (r1p) was observed (from 20.3 to 37.8 mM ?1 s?1, 86.2 % enhancement at 20 MHz and 310 K), mainly due to a threefold faster water exchange rate after acetylation of the surface ? NH3+ ions. This high r1p value, coupled with the large molar amount of grafted 2 onto the silica nanoparticles gives rise to a value of relaxivity per particle of 29 500 mM ?1 s?1, which possibly allows it to be used in molecular imaging procedures. Smaller changes were observed for the hybrid materials based on neutral 1 and 3 complexes. In fact, whereas 1 shows a weak interaction with the surface and acetylation induced only some decrease of the local rotation, complex 3 appears to be involved in a strong interaction with surface silanols. This results in the displacement of a coordinated water molecule and in a decrease of the accessibility of the solvent to the metal centre, which is unaffected by the modification of ammonium ions to neutral amides.  相似文献   

16.
In this research, poly(diallyldimethylammonium chloride)-capped gold nanoparticles, nickel ferrite particles, and carbon nanotubes were combined to form a PANC metal composite. The prepared metal composite modified onto a glassy carbon electrode was electropolymerized with poly(o-phenylenediamine) and immobilized with horseradish peroxidase, anti-carcinoembryonic antigen antibody, and bovine serum albumin to create the label-free immunosensors for rapid detection of carcinoembryonic antigen (CEA) using chronoamperometry. This developed biocomposite material modified onto a glassy carbon electrode presented an excellent electrocatalytic response to the redox reaction of hydrogen peroxide as a sensing probe, from which the kinetic parameters including of a charge transfer rate constant, a diffusion coefficient value, an electroactive surface area, and a surface concentration were calculated to be 1.85 s−1, 4.28×10−6 cm2 s−1, 0.14 cm2 and 1.87×10−8 mol cm−2, respectively. The developed immunosensors also exhibited a wide linear range of CEA concentration from 0.01 to 25 ng mL−1 with high sensitivity (96.21 μA cm−2 ng−1 mL) and low detection limit (0.72 pg mL−1), excellent selectivity without interfering effects from possible species (amoxicillin, ascorbic acid, aspirin, caffeine, cholesterol, dopamine, glucose, and uric acid), outstanding stability (n=100, %I>50 %), repeatability (%RSD=0.34, n=10), reproducibility (%RSD=4.06, n=10), and rapid analysis (25 s each operation time). This proposed method was successfully applied for CEA detection in whole blood samples with satisfactory results, suggesting that this developed sensing platform may be considered to be exploited for fabrication of other label-free electrochemical immunosensors for the real sample analysis.  相似文献   

17.
The heptadentate ligand L was shown to form an extremely stable Gd complex at neutral pH with a pGd value of 18.4 at pH 7.4. The X-ray crystal structures of the complexes formed with Gd and Tb displayed two very different coordination behaviors being, respectively, octa- and nonacoordinated. The relaxometric properties of the Gd complex were studied by field-dependent relaxivity measurements at various temperatures and by 17O NMR spectroscopy. The pH-dependence of the longitudinal relaxivity profile indicated large changes around neutral pH leading to a very large value of 10.1 mm −1⋅s−1 (60 MHz, 298 K) at pH 4.7. The changes were attributed to an increase of the hydration number from one water molecule in basic conditions to two at acidic pH. A similar trend was observed for the luminescence of the Eu complex, confirming the change in hydration state. DOSY experiments were performed on the Lu analogue, pointing to the absence of dimers in solution in the considered pH range. A breathing mode of the complex was postulated, which was further supported by 1H and 31P NMR spectroscopy of the Yb complex at varying pH and was finally modeled by DFT calculations.  相似文献   

18.
The optimization of the physico‐chemical properties of both GdIII chelates and nanocarriers is of great importance for the development of effective nanosystems for magnetic resonance imaging (MRI) applications. With this aim, macrocyclic GdIII chelates were selectively attached to the pendant amino groups exposed to the external surface of spheroidal mesoporous silica nanoparticles (MSNs). This was achieved by treating the metal complexes with MSNs that contained the templating surfactant molecules confined within the silica channels (hexadecyltrimethylammonium (CTA)/MSN), followed by extraction of the surfactant. The nanoparticles showed greatly improved 1H relaxometric efficiency relative to corresponding systems that also feature GdIII chelates conjugated inside the pores. A further significant relaxivity enhancement was observed after chemical transformation of the free amino groups into amides. The ionic relaxivity of the final nanoparticles (r1p=79.1 mM ?1 s?1; 0.5 T, 310 K) is one of the highest reported so far.  相似文献   

19.
In the stirred batch experiment, the Mn(II)-catalyzed bromate-saccharide reaction in aqueous H2SO4 or HClO4 solution exhibits damped oscillations in the concentrations of bromide and Mn(II) ions. Peculiar multiple oscillations are observed in the system with arabinose or ribose. The apparent second-order rate constants of the Mn(III)-saccharide reactions at 25°C are (0.659, 1.03, 1.76, 2.32, and 6.95) M−1 s−1 in 1.00 M H2SO4 and (4.69, 7.51, 10.2, 13.5, and 36.2) M−1 s−1 in (2.00–4.00) M HClO4 for (glucose, galactose, xylose, arabinose, and ribose), respectively. At 25°C, the observed pseudo-first-order rate constant of the Mn(III)-Br reaction is kobs = (0.2 ± 0.1) [Br] + (130 ± 5)[Br]2 + (2.6 ± 0.1) × 103[Br]3 + (1.2 ± 0.2) × 104[Br]4 s−1 and the rate constant of the Br2 Mn(II) reaction is less than 1 × 10−4 M−1 s−1. The second-order rate constants of the Br2-saccharide reactions are (3.65 ± 0.15, 11.0 ± 0.5, 4.05, 12.5 ± 0.7, and 2.62) × 10−4 M−1 s−1 at 25°C for glucose, galactose, xylose, arabinose, and ribose, respectively.  相似文献   

20.
Poly(3-hydroxyoctanoate-co-3-hydroxy-10-undecenoate)s (PHOUs) with controlled amounts of unsaturated repeating units were epoxidized to various extents with m-chloroperbenzoic acid (MCPBA) in homogeneous solution. The epoxidation reaction was second order, with an initial rate constant of 1.1 × 10−3Lmol−1.s−1 at 20°C, regardless of the unsaturated unit content in PHOU. No substantial change in either molecular weight or molecular weight distribution occurred as a result of epoxidation, but the melt transition temperature and enthalpy of melting both decreased as the unsaturated groups were increasingly converted into epoxide groups. In contrast, the glass transition temperature (Tg) increased by approximately 0.25°C for each 1 mol % of epoxidation, irrespective of the composition of the PHOU. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2381–2387, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号