首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes PdII(qcq)(OAc) and PtII(qcq)Cl have been synthesized using environmentally benign synthesized ligands and characterized by elemental analyses: Fourier transform infrared spectroscopy, UV–visible spectroscopy, 1H NMR spectroscopy, and X-ray diffraction. The catalytic activity of the complex was assessed, in different media, for the Mizoroki–Heck coupling reaction for typical aryl halides and terminal olefins under aerobic conditions. Since the base and the solvent were found to influence the efficiency of the reaction, reaction conditions, temperature, time, and the amount of K3PO4 and a mixture of H2O/PEG, were optimized. We found, for the Mizoroki–Heck reaction coupling less reactive aryl chloride derivatives with olefins, promising activity for palladium catalysts. The electrochemical behavior of Hqcq and the Pd(II) complex was investigated by cyclic voltammetry and irreversible PdII/I reductions were observed. Hqcq and the Pd(II) and Pt(II) complexes were also screened for their in vitro antibacterial activity. They showed promising antibacterial activity comparable to that of the antibiotic penicillin.  相似文献   

2.
Palladium(II)‐catalyzed oxidation reactions exhibit broad utility in organic synthesis; however, they often feature high catalyst loading and low turnover numbers relative to non‐oxidative cross‐coupling reactions. Insights into the fate of the Pd catalyst during turnover could help to address this limitation. Herein, we report the identification and characterization of a dimeric PdI species in two prototypical Pd‐catalyzed aerobic oxidation reactions: allylic C−H acetoxylation of terminal alkenes and intramolecular aza‐Wacker cyclization. Both reactions employ 4,5‐diazafluoren‐9‐one (DAF) as an ancillary ligand. The dimeric PdI complex, [PdI(μ‐DAF)(OAc)]2, which features two bridging DAF ligands and two terminal acetate ligands, has been characterized by several spectroscopic methods, as well as single‐crystal X‐ray crystallography. The origin of this PdI complex and its implications for catalytic reactivity are discussed.  相似文献   

3.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   

4.
Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups was carried out smoothly in supercritical carbon dioxide under oxygen atmosphere when polystyrene-supported benzoquinone (PS-BQ) or CuII (CuI) chloride was employed as cocatalyst. The higher selectivity was achieved, without any chlorinated by-product detected, when using PS-BQ instead of CuII (or CuI) chloride. PS-BQ could be recycled with excellent catalytic activity remaining after each simple filtration. Chlorine ion was demonstrated to be a promoter. The different acetalization mechanisms were revealed by the subtle relationship of chlorine ion and benzoquinone (BQ) to the catalytic activity of PdCl2/PS-BQ, PdII-CuCl2 or Pd(OAc)2/PS-BQ.  相似文献   

5.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

6.
Specific chiral ligands have been designed by Trost et al. to perform enantioselective Pd-catalyzed allylic alkylations. It is shown that the Pd(0) complex formed by addition of the Trost ligand (4) to Pd0(dba)2 is not stable in most solvents (acetone, DMF, CH2Cl2). Indeed, Pd0(dba)(4) leads to the formation of a stable PdII complex 5 (X-ray structure), likely by activation of the two N-H bonds of the ligand by the Pd0 centre. The formation of the PdII complex competes with the reaction of Pd0(4) with (E)-PhCHCH-CH(OAc)-Ph, excluding any investigation of the kinetics of the latter reaction. The ionization steps from intermediate (η2-PhCHCH-CH(OAc)-Ph)Pd0(4) were found to be very slow. The cationic P,P complex [(η3-Ph-CH-CH-CH-Ph)Pd(4)]+, expected to be generated by addition of 2 equiv. of 4 to the precursor [(η3-Ph-CH-CH-CH-Ph)Pd(μ-Cl)]2, in the presence of a chloride scavenger, leads to a complex mixture whereas addition of 1 equiv. of 4 affords a stable bis-cationic PdII complex {[(η3-Ph-CH-CH-CH-Ph)Pd]2(4)]}2+, (X-ray structure) via a P,O complexation of each allyl-Pd moieties. This dissymmetric P,O coordination will favour the enantioselectivity of Pd-catalyzed allylic alkylation of (E)-PhCHCH-CH(OAc)-Ph by the control of the regioselectivity of the nucleophilic attack onto the allylic ligand which is responsible of the enantioselectivity of the overall catalytic reaction.  相似文献   

7.
This paper reports a green magnetic quasiheterogeneous efficient palladium catalyst in which Pd0 nanoparticles have been immobilized in self‐assembled hyperbranched polyglycidole (SAHPG)‐coated magnetic Fe3O4 nanoparticles (Fe3O4‐SAHPG‐Pd0). This catalyst has been used for effective ligandless Pd catalyzed Suzuki–Miyaura coupling reactions of different aryl halides with substituted boronic acids at room temperature and in aqueous media. Herein, SAHPG is used as support; it also acts as a reducing agent and stabilizer to promote the transformation of PdII to Pd0 nanoparticles. Also, this environmental friendly quasiheterogeneous catalyst is employed for the first time in the synthesis of new pyrimido[4,5‐b]indoles via oxidative addition/C? H activation reactions on the pyrimidine rings, which were obtained with higher yield and faster than when Pd(OAc)2 was used as the catalyst. Interestingly, the above‐mentioned catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled several times with no significant decrease in the catalytic activity.  相似文献   

8.
The hydrogenolysis of mono- and dinuclear PdII hydroxides was investigated both experimentally and computationally. It was found that the dinuclear μ-hydroxide complexes {[(PCNR)Pd]2(μ-OH)}(OTf) (PCNH=1-[3-[(di-tert-butylphosphino)methyl]phenyl]-1H-pyrazole; PCNMe=1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) react with H2 to form the analogous dinuclear hydride species {[(PCNR)Pd]2(μ-H)}(OTf). The dinuclear μ-hydride complexes were fully characterized, and are rare examples of structurally characterized unsupported singly bridged μ-H PdII dimers. The {[(PCNMe)Pd]2(μ-OH)}(OTf) hydrogenolysis mechanism was investigated through experiments and computations. The hydrogenolysis of the mononuclear complex (PCNH)Pd-OH resulted in a mixed ligand dinuclear species [(PCNH)Pd](μ-H)[(PCC)Pd] (PCC=a dianionic version of PCNH bound through phosphorus P, aryl C, and pyrazole C atoms) generated from initial ligand “rollover” C−H activation. Further exposure to H2 yields the bisphosphine Pd0 complex Pd[(H)PCNH]2. When the ligand was protected at the pyrazole 5-position in the (PCNMe)Pd−OH complex, no hydride formed under the same conditions; the reaction proceeded directly to the bisphosphine Pd0 complex Pd[(H)PCNMe]2. Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric hydroxides are proposed.  相似文献   

9.
A method for electrosynthesis of heteropolynuclear biquinoline-containing CuI and PdII complexes using sacrificial Cu and Pd anodes was developed. The sequence of anode dissolution (first Pd and then Cu) was important for the synthesis of the complex. The opposite sequence of dissolution resulted in oxidation of the initially formed CuI ions to CuII. The obtained CuI and PdII complexes with polymer ligands had high catalytic activity in the reaction of aryl halides with phenylacetylene giving rise to a C(sp2)-C(sp) bond. The yield of arylphenylacetylene in the presence of 0.1 mol.% of Pd catalyst in relation to the starting halide was 50–90% depending on the nature of the aryl halide.  相似文献   

10.
Reduction of the Pd?PEPPSI precatalyst to a Pd0 species is generally thought to be essential to drive Buchwald–Hartwig amination reactions through the well‐ documented Pd0/PdII catalytic cycle and little attention has been paid to other possible mechanisms. Considered here is the Pd?PEPPSI‐catalyzed aryl amination of chlorobenzene with aniline. A neat reaction system was used in new experiments, from which the potentially reductive roles of the solvent and labile ligand of the PEPPSI complex in leading to Pd0 species are ruled out. Computational results demonstrate that anilido‐containing PdII intermediates involving σ‐bond metathesis in pathways leading to the diphenylamine product have relatively low barriers. Such pathways are more favorable energetically than the corresponding reductive elimination reactions resulting in Pd0 species and other putative routes, such as the PdII/PdIV mechanism, single electron transfer mechanism, and halide atom transfer mechanism. In some special cases, if reactants/additives are inadequate to reduce a PdII precatalyst, a PdII‐involved σ‐bond metathesis mechanism might be feasible to drive the Buchwald–Hartwig amination reactions.  相似文献   

11.
As established previously for Pd(OAc)2, Pd0 complexes are formed in situ from Pd(OCOCF3)2 and n equiv. triarylphosphines (4-Z-C6H4)3P (Z = CF3, F, Cl, H, CH3; n ? 3). The phosphines are the intramolecular reducing agents and are oxidized to triarylphosphine oxides. The generated Pd0 complexes are anionic species ligated by the trifluoroacetate anion: Pd0(PAr3)n(OCOCF3) (n = 2 or 3). Pd0(PAr3)2(OCOCF3) is the reactive species involved in the oxidative addition to PhI. This leads to trans-PhPd(OCOCF3)(PPh3)2, involved in equilibrium with the cationic complex trans-[PhPd(PPh3)2(DMF)]+, instead of the expected trans-PhPdI(PPh3)2 complex. The existence of anionic Pd0 complexes ligated by the acetate or trifluoroacetate ions delivered by the precursors Pd(OAc)2 or Pd(OCOCF3)2, respectively, as well as their comparative reactivity in oxidative additions are consistent with theoretical DFT calculations.  相似文献   

12.
As a result of detailed mechanistic and kinetic studies, we have proposed that PdX2‐catalyzed oxidative coupling of o‐alkynylanilines 1 with terminal alkynes 2 under aerobic conditions is initiated by aminopalladation of 1 followed by ligand exchange of the resulting σ‐indolylpalladium(II) complex with 2 , reductive elimination and N‐demethylation. Side reactions associated with intermediates on the way to 2,3‐disubstituted indoles 3 were identified, and the roles of acetate and iodide in channeling the reaction towards the desired product were established. Based on kinetic and spectroscopic studies, the soluble iodide‐ligated Pd0 species was proposed to be the resting state of the catalyst and its oxidation to active PdII species was the turnover‐limiting step. Catalytic conditions with low loading of Pd(OAc)2 (0.0005 to 0.001 equiv) were subsequently developed.  相似文献   

13.
The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated by transition metals. The bridging trinuclear palladium species, [(LPdII)33‐O)2]2+ (L=2,9‐dimethylphenanthroline), was identified during the [LPd(OAc)]2(OTf)2‐catalyzed aerobic oxidation of 1,2‐propanediol. Independent synthesis, structural characterization, and catalytic studies of the trinuclear compound show that it is a product of oxygen activation by reduced palladium species and is a competent intermediate in the catalytic aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species illuminates a multinuclear pathway for aerobic oxidation reactions catalyzed by Pd complexes.  相似文献   

14.
The PdI-PdI bonded complex [Pd2(CH3CN)6][SbF6]2 is catalytically active towards Suzuki cross-coupling reactions of aryl bromides or chlorides with various arylboronic acids under mild conditions giving good to excellent yields. Its performance is enhanced by the introduction of stoichiometric or limited phosphines. The effects of different ligands, metal oxidation states [Pd(II), Pd(I) Pd(0)], bases and solvents have been examined.  相似文献   

15.
A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0(Ln)]=CF2) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2Pd(Ln)X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.  相似文献   

16.
The reduction of PdII precatalysts to catalytically active Pd0 species is a key step in many palladium‐mediated cross‐coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc)2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray‐ ionization mass spectrometry found palladate(II) complexes [LnPdR3]? (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas‐phase fragmentation, the [LnPdR3]? anions preferentially underwent a reductive elimination to yield Pd0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc)2 precatalyst. Other species of interest observed include the PdIV complex [PdBn5]?, which did not fragment via a reductive elimination but lost BnH instead.  相似文献   

17.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

18.
DFT calculations were performed to elucidate the oxidative addition mechanism of the dimeric palladium(II) abnormal N‐heterocyclic carbene complex 2 in the presence of phenyl chloride and NaOMe base under the framework of a Suzuki–Miyaura cross‐coupling reaction. Pre‐catalyst 2 undergoes facile, NaOMe‐assisted dissociation, which led to monomeric palladium(II) species 5 , 6 , and 7 , each of them independently capable of initiating oxidative addition reactions with PhCl. Thereafter, three different mechanistic routes, path a, path b, and path c, which originate from the catalytic species 5 , 7 , and 6 , were calculated at M06‐L ‐D3(SMD)/LANL2TZ(f)(Pd)/6–311++G**//M06‐L/LANL2DZ(Pd)/6–31+G* level of theory. All studied routes suggested the rather uncommon PdII/PdIV oxidative addition mechanism to be favourable under the ambient reaction conditions. Although the Pd0/PdII routes are generally facile, the final reductive elimination step from the catalytic complexes were energetically formidable. The PdII/PdIV activation barriers were calculated to be 11.3, 9.0, 26.7 kcal mol?1 (ΔΔGLS‐D3) more favourable than the PdII/Pd0 reductive elimination routes for path a, path b, and path c, respectively. Out of all the studied pathways, path a was the most feasible as it comprised of a PdII/PdIV activation barrier of 24.5 kcal mol?1GLS‐D3). To further elucidate the origin of transition‐state barriers, EDA calculations were performed for some key saddle points populating the energy profiles.  相似文献   

19.
Reductive elimination of alkyl−PdII−O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4] and AgNO3 additive under toluene/H2O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0-catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I and NO3, alkene insertion and SN2-type alkyl−PdII−ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2NO ligand from the alkyl−PdII−ONO2 species, thus enabling the challenging alkyl−PdII−ONO2 reductive elimination to be feasible.  相似文献   

20.
Di-t-butyl(ferrocenylmethyl)phosphine (1) has been isolated and structurally characterized. This ligand was found to be reasonably air stable as a solid and it has been shown to possess electron donating ability similar to that of tri-i-propylphosphine. A palladium catalyst bearing this ligand performed room temperature Suzuki-Miyaura coupling reactions with aryl bromides. Modest Heck coupling reactivity with aryl bromides was also observed at 100 °C. Complexation of 1 with Pd2(dba)3 led to formation of (1)2Pd0. Addition of 4-bromoanisole to solutions containing both 1 and Pd2(dba)3 led to formation of an oxidative addition product when 1:Pd ratios were ?1. With a 2:1 ratio of 1:Pd, monophosphine complex formation and oxidative addition were significantly inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号