首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We adopted an electrophoretic deposition method for the preparation of thin layers of insoluble composite nanoparticles composed of TiO2 core and about 2 nm thick shell of polythiophene, prepared by oxidative polymerization of thiophene. The reduced form of TiO2-polythiophene composite material was deposited on the conductive surface from an ultrasonically generated microdispersion. Varying the dispersion media, applied voltage and the electrode arrangement made it possible to control the quality and morphology of the films. Compact semitransparent films deposited on ITO electrodes, suitable for photoelectrical measurements, were obtained within short deposition times.  相似文献   

2.
The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques.  相似文献   

3.
A new high-efficiency light-emitting alternating copolymer of triphenylamine and pure PPV (TPA–PPV) has been designed and synthesized. The copolymer was highly soluble in common solvents. It could be spin cast onto various substrates to give highly transparent homogeneous thin films without heat treatment. The fluorescence quantum yield in benzene is almost up to 1.00. The maximum fluorescence wavelength for this alternating copolymer appeared around 470 nm. The fluorescence of TPA–PPV solution quenched by C60 was examined, and the result indicated that a strong interaction exists between TPA–PPV and C60 at the exited state. A primary single-layer LED based on ITO/TPA–PPV/Al has been fabricated, and the onset voltage is only 1.5 V and a bright green light was observed. The electroluminescence spectrum gives a peak at 510 nm when the operating voltage of 17 V was applied. The photoluminescence spectrum also appeared at the same wavelength as the electroluminescence, indicating that the same excited states are involved in the two processes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2587–2594, 1999  相似文献   

4.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of chiral polymers. EPD of poly-L-lysine (PLL) and poly-L-ornithine (PLO) films was performed for the first time on conductive substrates from aqueous and ethanol-water solutions. The deposition yield was monitored using a quartz crystal microbalance. The results demonstrated that the deposition yield can be varied by variation of the deposition time, voltage and polymer concentration in the solutions. It was shown that PLL and PLO provided stabilization and charging of hydroxyapatite (HA) nanoparticles in suspensions. Composite PLL-HA and PLO-HA films of controlled thickness were prepared by EPD. Electron microscopy investigations showed that the thickness of the PLL, PLO and composite films was varied in the range of 0-3 μm. The polymer and composite films can be used for biomedical applications.  相似文献   

5.
We present a method for controlled deposition of polyaniline from colloidal suspensions. Stable suspensions of polyaniline colloids (approximately 115 nm in diameter) were formed by dispersing polyaniline/formic acid solution into acetonitrile. It was demonstrated that the positively charged polyaniline colloids can be electrophoretically deposited onto various substrate materials such as platinum and ITO, forming continuous ultrathin films. We examined the film morphology, as well as the effects of process parameters, such as deposition time, colloid concentration, and applied voltage, on the deposition efficiency. Furthermore, the efficacy of the technique was illustrated by electrophoretically patterning polyaniline thin films onto selected individual micrometer-scale sensing elements within a microfabricated sensor array, and by further demonstrating its sensitivity to gaseous analytes including water and methanol.  相似文献   

6.

Polyaniline of low molecular weight (ca. 10 kDa) is combined with cellulose nanofibrils (sisal, 4–5 nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4 nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline–nanocellulose composite. Measurements with a polyaniline–nanocellulose film applied across an ITO junction (a 700 nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2 V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.

  相似文献   

7.
BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV–Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.  相似文献   

8.
Poly(p‐phenylenebenzobisthiazole) (PBT) is a heterocyclic, aromatic rigid‐rod polymer with a fully conjugated backbone and excellent dimensional, thermo‐oxidative, and solvent stabilities. A PBT polymer with an intrinsic viscosity of 18.0 dL/g was dissolved in methanesulfonic acid or Lewis acid. The PBT solution was spin‐coated and doctor‐bladed for freestanding films or onto an indium tin oxide (ITO) substrate. The acid was removed via coagulation. Scanning electron microscopy determined that the resultant film thicknesses were about 340 and 60 nm for PBT freestanding films and films on the ITO substrate, respectively. X‐ray scattering demonstrated that the freestanding films were in‐plane isotropic without long‐range order. The freestanding films were excited with a He‐Cd laser at 325 nm for photoluminescence (PL) response. PL spectra showed a distinct intensity maximum at 580 nm, regardless of the film‐forming conditions. After the films cooled to 67 K, the PL maximum shifted to 566 nm with enhanced intensity. Aluminum was evaporated onto the monolayer PBT thin film on the ITO substrate as an electron injector for electroluminescence (EL) response. Diodic electric behavior was observed for all monolayer PBT EL devices for the first time. A threshold voltage as low as 4 V was achieved for the monolayer EL devices. In addition, PBT EL spectra were tunable, with a maximum intensity at 570 nm at a bias voltage of 4.5 V changing to 496 nm at 7.5 V (i.e., a blueshift) with greatly increased intensity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1760–1767, 2002  相似文献   

9.
Yang Liu  Jiatong Sun 《Liquid crystals》2019,46(7):1052-1059
Ion beam (IB)-spurted indium tin oxide (ITO) thin layers are used to align liquid crystals (LC) with a lower driving voltage. During IB spurting process, the microcrystals transforming to large crystals of ITO is intimated by the change of In (3d), Sn (3d) and O (1s) core level in XPS spectra and the surface topology modifications in SEM and AFM images, and IB-spurted ITO thin layers are comparably transparent and conductive compared with ITO thin layers. The increased interactions between LC and IB-spurted ITO thin layers together with the roughed surface topology of ITO thin layers are the main causes for LC alignment. The fast response and distribution of electrical dipoles to external voltage in LC causes LC’s extremely low threshold voltage drive; in addition, LC directly aligned on ITO thin layers free from alignment layers shield effect further decreases LC’s threshold voltage. 1.8-keV IB-spurted ITO thin layers are more appropriate to align LC with the threshold voltage of 0.4853 V and the rising time of 0.237 ms.  相似文献   

10.
We have investigated highly flexible memristive devices using reduced graphene oxide (RGO) nanosheet nanocomposites with an embedded GQD Layer. Resistive switching behavior of poly (4-vinylphenol):graphene quantum dot (PVP:GQD) composite and HfOx hybrid bilayer was explored for developing flexible resistive random access memory (RRAM) devices. A composite active layer was designed based on graphene quantum dots, which is a low-dimensional structure, and a heterogeneous active layer of graphene quantum dots was applied to the interfacial defect structure to overcome the limitations. Increasing to 0.3–0.6 wt % PVP-GQD, Vf changed from 2.27–2.74 V. When negative deflection is applied to the lower electrode, electrons travel through the HfOx/ITO interface. In addition, as the PVP-GQD concentration increased, the depth of the interfacial defect decreased, and confirmed the repetition of appropriate electrical properties through Al and HfOx/ITO. The low interfacial defects help electrophoresis of Al+ ions to the PVP GQD layer and the HfOx thin film. A local electric field increase occurred, resulting in the breakage of the conductive filament in the defect.  相似文献   

11.
沉积电位对电沉积ZnS薄膜的影响   总被引:1,自引:0,他引:1  
采用电沉积方法,在不同沉积电位条件下,在氧化锡铟(ITO)导电玻璃上沉积制备了ZnS薄膜,利用XRD、SEM和UV-VIS测试技术对在不同沉积电位所制备薄膜的晶相结构、表面微观形貌和光学性能进行了表征.研究结果表明:沉积电位在1.5 V—1.7 V范围内制备的ZnS薄膜呈非晶态,其可见光透过率从60 %降低到20 %,薄膜的光学带隙约为3.97 eV.在沉积电位为2.0 V条件下所沉积薄膜为ZnS结晶相和金属Zn混合相,薄膜透过率显著降低.  相似文献   

12.
Indium tin oxide (ITO) is recognized as the best transparent and conductive material [transparent conducting oxide (TCO)] until now and its properties are dependent on the preparation method. In the present work ITO films with In:Sn atomic ratio 9:1 were prepared by a sol–gel route on different substrates (microscope glass slides, microscope glass covered with one layer of SiO2 and Si wafers) for TCO applications. The multilayer ITO films were obtained by successive deposition by the dip-coating method and the films were characterized from the structural, morphological, optical, and electrical points of view using X-ray diffraction, scanning electron microscopy, atomic force microscopy, spectroscopic ellipsometry and by Hall effect measurements, respectively. The results showed that the thickness, optical constants and carrier numbers depend strongly on the type of substrate, number of deposited layers and sol concentration. The optical properties of ITO films are closely related to their electrical properties. The enhancement of the conductivity was possible with the increase of crystallite size (which occurred after thermal treatment) and with the reduction of surface roughness.  相似文献   

13.
Polyaniline of low molecular weight (ca. 10?kDa) is combined with cellulose nanofibrils (sisal, 4?C5?nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4?nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline?Cnanocellulose composite. Measurements with a polyaniline?Cnanocellulose film applied across an ITO junction (a 700?nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2?V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.  相似文献   

14.
V2O5 thin films were successfully prepared on ITO substrate with electrophoresis deposition (EDP) through V2O5 sol. X-ray diffraction and scanning electron microscopy were used for studying the structure of the films. The optical and electrochemical properties were measured by the transmittance spectra and cyclic voltammetry measurements, respectively. It is found that V2O5 thin films deposited by EDP are a compact microstructure with finer adhesive force with ITO substrate and the thickness is uniform. During the cycle experiment, the films exhibited reversible two-color (yellow at oxidation and green at reduction) with a maximum transmittance change of around 30%. Moreover, the films had an excellent cycle for lithium intercalation/deintercalation and good cycle stability, the cycle efficiency for the 50th cycle was 88.02% and the films still had fine adhesive force with ITO substrate with no dissolving over more than 50 cycles. The Li+ diffusion coefficient in V2O5 thin film was 5.10×10-12 cm2/s by the electrochemical impedance spectra method. All results indicate that V2O5 thin films by the electrophoresis deposition may be suitable for the use in the electrochromic devices.  相似文献   

15.
采用超声搅拌化学浴法(UCBD)在SnO2:F透明导电玻璃衬底上制备了CdS薄膜.研究了退火和CdCl2处理对UCBD-CdS薄膜的表面形貌、晶体结构和直接带隙的影响,比较了沉积时间对UCBD-CdS薄膜中CdS聚集体颗粒大小和堆积致密性的影响.结果表明,CdCl2处理可使CdS聚集体中的小颗粒重新熔合在一起,但CdS聚集体的大小并没有改变.在UCBD-CdS薄膜的沉积过程中,CdS薄膜的横向和纵向生长速率之比会随着沉积时间的不同而改变,且沉积时间是获得大颗粒的CdS聚集体和致密的UCBD-CdS薄膜的重要影响因素.当沉积时间为40min时,获得的UCBD-CdS薄膜较致密,CdS聚集体的大小为180nm,膜厚为80.8nm,适合作为薄膜太阳电池的窗口层.  相似文献   

16.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.  相似文献   

17.
The technique for ITO (Tin‐doped indium oxide) thin films by sol‐gel process is presented in this paper. After annealing at 500° for 15 min, ITO gel films get transformed into nanocrystallined indium tin oxide films. We studied the microstructure of ITO thin film which is closely related to optical and electrical properties. The microstructure of ITO thin film can be observed through high‐resolution transmission electronic spectroscopy (HRTEM) and the Fast Fourier Transform (FFT) technique. The film is nanocrystallite with grain sizes about 20 nm. Also, the surface chemical components were studied by XPS spectra. The transmission and the resistivity of ITO films is 97.0% and 3.5 × 10?3 Ω?cm, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Carbon nanomaterials with metal grids were used as transparent conductive electrodes for liquid crystal displays (LCDs) to develop an indium tin oxide (ITO)-free device. We prepared LCDs with CNTs and graphene electrodes; however, the working voltage of the device with the CNT electrodes was high. The device with graphene electrodes had good performance, but not as good as devices with ITO electrodes. To improve the device performance, we applied a metal grid to the carbon nanomaterial to create low sheet-resistance transparent electrodes. The device with the graphene and metal grid transparent electrodes had a threshold voltage as low as 0.23 V/µm, which is similar to that of typical LCDs with ITO electrodes. The results show that a hybrid transparent conductive film with graphene and metal grid could be an alternative to ITO for developing ITO-free LCDs.  相似文献   

19.
Clusters of C60-aniline dyads are deposited as thin films on nanostructured SnO2 electrodes under the influence of an electric field. At low applied DC voltage (<5 V) the clusters in toluene/acetonitrile (1:3) mixed solvent grow in size (from 160 nm to approximately 200 nm in diameter) while at higher voltages (>50 V) they are deposited on the electrode surface as thin films. The C60- aniline dyad cluster films when cast on nanostructured SnO2 films are photoelectrochemically active and generate photocurrent under visible light excitation. These nanostructured fullerene films are capable of delivering relatively large photocurrents (up to approximately 0.2 mA cm(-2), photoconversion efficiency of 3-4%) when employed as photoanodes in photoelectrochemical cells. Both luminescence and transient absorption studies confirm the formation of charge transfer product (C60 anion) following UV/Vis excitation of these films. Photo-induced charge separation in these dyad clusters is followed by the electron injection from C60-anion moiety into the SnO2 nanocrystallites. The oxidized counterpart is reduced by the redox couple present in the electrolyte, thus regenerating the dyad clusters. The feasibility of casting high surface area thin fullerene films on electrode surfaces has opened up new avenues to utilize dyad molecules of sensitizer bridge donor type in light energy conversion devices, such as solar cells.  相似文献   

20.
To study polymer-dispersed liquid crystal (PDLC) films doped with indium tin oxide (ITO) nanoparticles (NPs), samples were prepared by ultraviolet-initiated polymerisation based on the thiol–acrylate system. Owing to the interaction between PDLC system and ITO NPs, the content and the size of ITO NPs are the main determinants to the microstructure which plays an essential role on the electro-optical and anti-infrared properties of the PDLC films. In the polymer matrix, a novel microstructure consisting of a dense surface, micron-sized meshes and submicron meshes is found to benefit the better performances of the low driven voltage (20.7 V), the relatively high contrast ratio (8.3) and the lowest transmittance(500–2500 nm) on average at about 3.55% with maximum of merely 7.6%. Thus, it lays a solid foundation for the further investigations on the microstructure and the performance of the PDLC films. Meanwhile, it is proved that the PDLC film, improved performance through doping ITO NPs, is promising to be a superior choice in the field of energy-saving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号