首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present results from molecular dynamic simulations devoted to the characterization of the interaction between water molecules and hydroxylated graphite surfaces considered as models for surfaces of soot emitted by aircraft. The hydroxylated graphite surfaces are modeled by anchoring several OH groups on an infinite graphite plane. The molecular dynamics simulations are based on a classical potential issued from quantum chemical calculations. They are performed at three temperatures (100, 200, and 250 K) to provide a view of the structure and dynamics of water clusters on the model soot surface. These simulations show that the water-OH sites interaction is quite weak compared to the water-water interaction. This leads to the clustering of the water molecules above the surface, and the corresponding water aggregate can only be trapped by the OH sites when the temperature is sufficiently low, or when the density of OH sites is sufficiently high.  相似文献   

2.
The properties, interactions, and reactions of cyclic water clusters (H(2)O)(n=1-5) on model systems for a graphite surface have been studied using pure B3LYP, dispersion-augmented density functional tight binding (DFTB-D), and integrated ONIOM(B3LYP:DFTB-D) methods. Coronene C(24)H(12) as well as polycircumcoronenes C(96)H(24) and C(216)H(36) in monolayer, bilayer, and trilayer arrangements were used as model systems to simulate ABA bulk graphite. Structures, binding energies, and vibrational frequencies of water clusters on mono- and bilayer graphite models have been calculated, and structural changes and frequency shifts due to the water cluster-graphite interactions are discussed. ONIOM(B3LYP:DFTB-D) with coronene and water in the high level and C(96)H(24) in the low level mimics the effect of extended graphite pi-conjugation on the water-graphite interaction very reasonably and suggests that water clusters only weakly interact with graphite surfaces, as suggested by the fact that water is an excellent graphite lubricant. We use the ONIOM(B3LYP:DFTB-D) method to predict rate constants for model pathways of water dissociative adsorption on graphite. Quantum chemical molecular dynamics (QM/MD) simulations of water clusters and water addition products on the C(96)H(24) graphite model are presented using the DFTB-D method. A three-stage strategy is devised for a priori investigations of high temperature corrosion processes of graphite surfaces due to interaction with water molecules and fragments.  相似文献   

3.
Single-component clusters of methanol and methyl chloride have been produced by adiabatic expansion, and their carbon 1s photoelectron spectra were recorded using synchrotron radiation and a high-resolution electron analyzer. The experimental spectra are interpreted by means of theoretical models based on molecular dynamics simulations. The data are used to explore to what extent core-level photoelectron spectra may provide information on the bonding mechanism and the geometric structure of clusters of polar molecules. The results indicate that the cluster-to-monomer shift in ionization energy and also the width of the cluster peak may be used to distinguish between hydrogen bonding and weaker electrostatic interactions. Moreover, the larger width of the cluster peak in methanol clusters as compared to methyl chloride clusters is partly due to the structured surface of methanol clusters. Theoretical modeling greatly facilitates the analysis of core-level photoelectron spectra of molecular clusters.  相似文献   

4.
We have used a recently developed electron-methanol molecule pseudopotential in approximate quantum mechanical calculations to evaluate and statistically analyze the physical properties of an excess electron in the field of equilibrated neutral methanol clusters ((CH(3)OH)(n), n=50-500). The methanol clusters were generated in classical molecular dynamics simulations at nominal 100 and 200 K temperatures. Topological analysis of the neutral clusters indicates that methyl groups cover the surface of the clusters almost exclusively, while the associated hydroxyl groups point inside. Since the initial neutral clusters are lacking polarity on the surface and compact inside, the excess electron can barely attach to these structures. Nevertheless, most of the investigated cluster configurations do support weakly stabilized cluster anion states. We find that similarly to water clusters, the pre-existing instantaneous dipole moment of the neutral clusters binds the electron. The localizing electrons occupy diffuse, weakly bound surface states that largely engulf the cluster although their centers are located outside the cluster molecular frame. The initial localization of the excess electron is reflected in its larger radius compared to water due to the lack of free OH hydrogens on the cluster surface. The stabilization of the excess electron increases, while the radius decreases monotonically as the clusters grow in size. Stable, interior bound states of the excess electron are not observed to form neither in finite size methanol clusters nor in the equilibrium bulk.  相似文献   

5.
DMSO-water mixtures exhibit a marked freezing point depression, reaching close to 60 K at n(DMSO) = 0.33. The phase diagram indicates that stable DMSO-water clusters may be responsible for this phenomenon. Using time-independent quantum chemical methods, we investigate possible candidates for stable supermolecules at mole fractions n(DMSO) = 0.25 and 0.33. The model clusters are built by adding various numbers of water molecules to a single DMSO molecule. Structures and interaction energetics are discussed in the light of experimental and theoretical results from the literature. A comparison with results from molecular dynamics simulations is of particular interest. Our optimized structures are spatially very different from those previously identified through MD simulations. To identify the structural patterns characterizing the clusters, we classify them on the basis of hydrogen-acceptor interactions. These are well separated on an interaction energy scale. For the hydrophobic interactions of the methyl groups with water, attractive interactions of up to 8 kJ/mol are found. In forming clusters corresponding to a range of different mole fractions, up to four water molecules are added to each DMSO molecule. This corresponds to a rough local model of solvation. Examination of the trends in the interactions indicates that the methyl-water interaction becomes more important upon solvation. Finally, we investigate how the clusters interact and attempt to explain which role is played by the various structures and their intercluster interaction modes in the freezing behavior of DMSO-water.  相似文献   

6.
In this study we have investigated the dynamics of small water clusters using microcanonical molecular dynamics simulations. The clusters are formed by colliding vapor monomers with target clusters of two and five molecules. The monomers are sampled from a thermal ensemble at T=300 K and target clusters with several total energies are considered. We compare rigid extended simple point charge water with flexible counterparts having intramolecular harmonic bonds with force constants 10(3) and 10(5) kcal(mol A2). We show that the lifetimes of the clusters formed via collision process are similar for the rigid model and the flexible model with the bigger force constant, if the translational temperatures of the target cluster molecules are equal. The model with the smaller force constant results in much longer lifetimes due to the stabilizing effect caused by the kinetic energy transfer into internal vibration of the molecules. This process may take several hundreds of picoseconds, giving rise to time-dependent decay rates of constant-energy clusters. A study of binary collisions of water molecules shows that the introduction of flexibility to the molecules increases the possibility of dimer formation and thus offers an alternative route for dimer production in vapors. Our results imply that allowing for internal degrees of freedom is likely to enhance gas-liquid nucleation rates in water simulations.  相似文献   

7.
The thermodynamic properties of pure water clusters and aqueous aggregates with either CO or CO2 molecule were calculated by the molecular dynamics method. The resulting size dependence of the surface tension of the clusters was used to determine the size of the critical seeds. The rate of homogeneous and binary nucleation in atmospheric air was estimated. The role of polar and nonpolar impurity molecules at the initial stage of steam condensation is discussed.  相似文献   

8.
A quantum-chemical investigation made of the adsorption of water and methanol at hydrophilic centers (carboxyl groups) on the partly oxidized surface of graphite was undertaken. The enthalpy of adsorption of water and methanol at such centers was determined. It was shown that water is adsorbed at the surface carboxyl groups in the form of dimers, while methanol is adsorbed in the form of single molecules. It was confirmed that the formation of clusters of water molecules in the vicinity of the hydrophilic center is a characteristic feature of the adsorption of water on the surface of graphite and other adsorbents.  相似文献   

9.
An ab initio direct Ehrenfest dynamics method with time-dependent density functional theory is introduced and applied to collisions of 5 eV oxygen atoms and ions with graphite clusters. Collisions at three different sites are simulated. Kinetic energy transfer from the atomic oxygen to graphite local vibrations is observed and electron-nuclear coupling resulting in electronic excitation within the graphite surface as well as alteration of the atomic charge is first reported in this paper. The three oxygen species studied, O(3P), O-(2P), and O+(4S), deposit different amounts of energy to the surface, with the highest degree of damage to the pi conjugation of the cluster produced by the atomic oxygen cation. Memory of the initial charge state is not lost as the atom approaches, in contrast to the usual assumption.  相似文献   

10.
We have examined the structure and dynamics of sodium dodecyl sulfate (SDS) and dodecane (C12) molecular aggregates at varying surface coverages on the basal plane of graphite via classical molecular dynamics simulations. Our results suggest that graphite-hydrocarbon chain interactions favor specific molecular orientations at the single-molecule level via alignment of the tail along the crystallographic directions. This orientational bias is reduced greatly upon increasing the surface coverage for both molecules due to intermolecular interactions, leading to very weak bias at intermediate surface coverages. Interestingly, for complete monolayers, we find a re-emergent orientational bias. Furthermore, by comparing the SDS behavior with C12, we demonstrate that the charged head group plays a key role in the aggregate structures: SDS molecules display a tendency to form linear file-like aggregates while C12 forms tightly bound planar ones. The observed orientational bias for SDS molecules is in agreement with experimental observations of hemimicelle orientation and provides support for the belief that an initial oriented layer governs the orientation of hemimicellar aggregates.  相似文献   

11.
A series of quantum molecular dynamics simulations have been performed to investigate the energetic, structural, dynamic, and spectroscopic properties of methanol cluster anions, [(CH(3)OH)(n)](-), (n = 50-500). Consistent with the inference from photo-electron imaging experiments, we find two main localization modes of the excess electron in equilibrated methanol clusters at ~200 K. The two different localization patterns have strikingly different physical properties, consistent with experimental observations, and are manifest in comparable cluster sizes to those observed. Smaller clusters (n ≤ 128) tend to localize the electron in very weakly bound, diffuse electronic states on the surface of the cluster, while in larger ones the electron is stabilized in solvent cavities, in compact interior-bound states. The interior states exhibit properties that largely resemble and smoothly extrapolate to those simulated for a solvated electron in bulk methanol. The surface electronic states of methanol cluster anions are significantly more weakly bound than the surface states of the anionic water clusters. The key source of the difference is the lack of stabilizing free hydroxyl groups on a relaxed methanol cluster surface. We also provide a mechanistic picture that illustrates the essential role of the interactions of the excess electron with the hydroxyl groups in the dynamic process of the transition of the electron from surface-bound states to interior-bound states.  相似文献   

12.
Ground‐state equilibrium Born–Oppenheimer molecular dynamics on I?(H2O)3–5 clusters at ~200 K are performed to sample configurations for calculating the charge‐transfer‐to‐solvent (CTTS) absorption spectra for these clusters. When there are more water molecules in clusters, the calculated CTTS spectra are found to become more intense with the absorption maxima shifting to higher energies, which is in agreement with experimental results. In addition, compared with the findings for optimized structures, the absorption energies of the iodide 5p orbitals are red‐shifted at ~200 K because, on average, the distances between the iodide and the dangling hydrogen atoms are increased at finite temperatures which weakens the interactions between the iodide and water molecules in the clusters. Moreover, the number of ionic hydrogen bonds in the clusters are also reduced. However, it is found that all dangling hydrogen atoms must be considered to obtain a good correlation between the CTTS excitation energy and the average distance between the iodide and the dangling hydrogen atoms, which indicates the existence of the strong interactions of the CTTS electron with all of the dangling hydrogen atoms.  相似文献   

13.
The structure, dynamics, and energetics of methanol adlayers on the nonpolar ZnO(1010) surface have been studied by He-atom diffraction (HAS), high-resolution electron energy loss spectroscopy (HREELS), thermal desorption spectroscopy (TDS), and density functional calculations. The experimental and theoretical data consistently show that at temperatures below 357 K methanol forms an ordered adlayer with a (2 × 1) periodicity and a coverage of one monolayer in which half of the methanol molecules are dissociated. The ordering of the methanol molecules is governed by repulsive interactions between the methyl groups of the methanol molecules. This repulsive interaction is also responsible for the formation of a second, low-density phase at higher temperatures with half monolayer coverage of undissociated methanol which is stable up to 440 K.  相似文献   

14.
Lepont C  Gunatillaka AD  Poole CF 《The Analyst》2001,126(8):1318-1325
The solvation parameter model is used to study the retention mechanism of neutral organic compounds on porous graphitic carbon with methanol-water mobile phases containing from 0-100% (v/v) methanol. The dominant contribution to retention is the cavity formation-dispersion interaction term, composed of favorable interactions in the mobile phase (hydrophobic effect) and additional contributions from adsorption on the graphite surface. Electron lone pair and dipole-type interactions in the adsorbed state result in increased retention. Hydrogen-bonding interactions are more favorable in the mobile phase resulting in lower retention. The changes in the system constants of the solvation parameter model for cavity formation-dispersion interactions and hydrogen-bond interactions are linearly related to the volume fraction of water in the mobile phase. The system constants for electron lone pair interactions and dipole-type interactions are non-linear and go through a maximum and minimum value, respectively, at a specific mobile phase composition. The solvation parameter model poorly predicts the retention properties of angular molecules. This is probably due to the failure of the characteristic volume to correctly model the contact surface area for the interaction of angular molecules with the planar graphite surface. General factors affecting the quality of model fits for adsorbents are discussed.  相似文献   

15.
Quantum effects in the scattering and desorption process of a water molecule from a graphite surface are investigated using the linearized path integral model. The graphite surface is quantized rigorously using the fully quantum many-body Wigner transform of the surface Boltzmann operator, while the water molecule is treated as rigid. Classical dynamics with these quantized initial conditions show that quantizing the surface at 100 and 300 K results in markedly different results, compared to a fully classical analysis. The trapping probability (defined as the probability of multiple encounters with the surface) is not sensitive to the choice of dynamical treatment, but the residence time on the surface is much shorter in the quantum case. At 300 K the transiently trapped molecules desorb from the surface with a rate constant which is 60-70% larger than the corresponding classical value. Lowering the surface temperature to 100 K decreases the quantum rate constant by approximately a factor of 3 while all trapped molecules stick to the surface in the classical case. The stability of the quantum initial state for the highly anisotropic graphite crystal is discussed in detail as well as the dynamical consequences of energy redistribution during the scattering process. The graphite surface application demonstrates that the Boltzmann operator Wigner transform for a system with 900 degrees of freedom can be obtained by the so-called gradient implementation [Poulsen et al. J. Chem. Theory Comput. 2006, 2, 1482] of the underlying Feynman-Kleinert effective frequency theory, an implementation that only requires a force and potential routine for the system at hand, and hence is applicable to any molecule-surface collision problem.  相似文献   

16.
The MoZSM-5 (4.0 wt % Mo) catalyst has been characterized by high-resolution transmission electron microscopy, EDXA, and EPR. Two types of molybdenum-containing particles are stabilized in the catalyst in the course of nonoxidative methane conversion at 750°C. These are 2-to 10-nm molybdenum carbide particles on the zeolite surface and clusters smaller than 1 nm in zeolite channels. According to EPR data, these clusters contain the oxidized molybdenum form Mo5+. The surface Mo2C particles are deactivated at the early stages of the reaction because of graphite condensation on their surface. Methane is mainly activated on oxidized molybdenum clusters located in the open molecular pores of the zeolite. The catalyst is deactivated after the 420-min-long operation because of coke buildup on the zeolite surface and in the zeolite pores.  相似文献   

17.
Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.  相似文献   

18.
Computer simulations of supercritical carbon dioxide and its mixtures with polar cosolvents: water, methanol, and ethanol (concentration, 0.125 mole fractions) at T = 318 K and ρ = 0.7 g/cm3 are performed. Atom-atom radial distribution functions are calculated by classical molecular dynamics, while the probability distributions of relative orientation of CO2 molecules in the first and second coordination spheres describing the geometry of the nearest environment of CO2 molecules and the trajectories of cosolvent molecules are found using Car-Parrinello molecular dynamics. Based on the latter, the conclusions regarding structure and interactions of polar entrainers in their mixtures with supercritical CO2 are made. It is shown that the microstructure of carbon dioxide varies only slightly upon the introduction of cosolvents.  相似文献   

19.
A model for isothermal homogeneous nucleation is proposed that improves the classical model. A quasiequilibrium distribution of clusters was calculated on a basis of the Frenkel’-Lothe-Pound theory. The dependence of the free energy of clusters on their size was represented by an interpolation formula relating the free energy of dimers and large clusters to which a notion of macroscopic surface tension is applicable. The nucleation rate and the dependence of the cluster temperature on their size were calculated by balance equations describing the heating of from a cluster due to the condensation of monomers and its cooling due to collisions with an ambient gas. It is shown that the nucleation rate in excess buffer gas is higher than for the pure condensing gas by approximately two orders of magnitude. The model adequately describes the experimental data for the nucleation of methanol supersaturated vapor.  相似文献   

20.
The preferential structures of small copper clusters Cun (n=2-9) and the adsorption of methanol molecules on these clusters are examined with first principles, molecular dynamics simulations. The results show that the copper clusters undergo systematic changes in bond length and bond order associated with altering their preferential structures from one-dimensional structures, to two-dimensional and three-dimensional structures. The results also indicate that low coordination number sites on the copper clusters are both the most favorable for methanol adsorption and have the greatest localization of electronic charge. The simulations predict that charge transfer between the neutral copper clusters and the incident methanol molecules is a key process by which adsorption is stabilized. Importantly, the changes in the dimensionality of the copper clusters do not significantly influence methanol adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号