首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A tetraphenylethene (TPE) functionalized cationic pillar[5]arene (CWP5-TPE) was successfully synthesized, and the intramolecular rotation of the TPE motif was restricted via cationic pillar[5]arene-based host–guest recognition-mediated supramolecular self-assembly in water, resulting in the efficient enhancement of fluorescence emission based on the aggregation induced emission (AIE) mechanism. CWP5-TPE self-assembled into nanoribbons while the host–guest inclusion complex formed into supramolecular amphiphile nanoparticles in water.  相似文献   

2.
A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal–ligand coordination and host–guest interactions has been constructed from a terpyridine-monofunctionalized leaning tower[6]arene, a tetraphenylethylene AIEgen, and a bridging coordination ion (Zn2+). Addition of competitive binding agents, trifluoroacetic acid, and/or pillar[5]arene can break the metal coordination and/or host-guest inclusion complexation, and thermal heating can weaken the non-covalent interactions in the supramolecular polymer gel, all leading to the gel-to-sol transition.  相似文献   

3.
Functional gels fabricated from supramolecular host–guest interactions exhibit outstanding characteristics including stimuli-responsiveness, self-healing and adaptability. Pillar[n]arenes are new generation of supramolecular macrocyclic host, which displayed excellent host–guest recognition properties. In the last few years, pillar[n]arene-based gels that include both hydrogels and organogels have been attracted more and more attention. In this digest, the recent advances in this field are reviewed, with special emphasis on the multistimuli responsive pillar[n]arene gels. It is anticipated that more and more pillar[n]arenes-based gel materials with smart properties will be developed in the near future.  相似文献   

4.
《中国化学快报》2023,34(8):108088
Synthesis and functionalization of novel macrocyclic host molecules are important topics in supramolecular chemistry. In this work, the first amphiphilic [2]biphenyl-extended pillar[6]arene (AM-[2]BP-ExP6) was designed and synthesized with poly(ethylene glycol) chains as the hydrophilic tails and a rigid cavity as the hydrophobic core. Due to its amphiphilic nature, AM-[2]BP-ExP6 could self-assemble to stable fibers in water. What's more, AM-[2]BP-ExP6 could associate with quaternary ammonium modified tetraphenylethylene guest (QTPE) to form a 2:1 host-guest complex, accompanied by significant enhanced fluorescence. Interestingly, different like AM-[2]BP-ExP6, AM-[2]BP-ExP6⊃QTPE host-guest complex self-assembled into fluorescent particles with diameter about 310 nm, the obtained fluorescent particles can be further employed in living cell imaging.  相似文献   

5.
A novel approach for in situ generation of AgI quantum dots by the confinement of a pillar[5]arene‐based supramolecular polymer network has been successfully developed. The supramolecular polymer network ( SPN‐QP ) was constructed by using a bis‐8‐hydroxyquinoline‐modified pillar[5]arene derivative as a host ( H‐QP ) and a bis‐pyridinium‐modified decane as guest ( G‐PD ). The SPN‐QP shows ultrasensitive response for Ag+. The limit of detection is about 7.44×10?9 M..Interestingly, when I? was added to the SPN‐QP +Ag+ system, an unexpected strong warm‐white fluorescence emission was observed. After carefu investigation, we found that the strong warm‐white fluorescence emission could be attributed to the in situ formation of AgI quantum dots under the confinement of the supramolecular polymer network ( SPN‐QP ). Based on this approach, ultrasensitive detection of I? was realized. The limit of detection for I? is 4.40×10?9 M. This study provides a new way for the preparation of quantum dots under the confinement of supramolecular polymer network as well as ultrasensitive detection of ions by in situ formation of quantum dots.  相似文献   

6.
A metal-organic photoinduced electron transfer(PET) supramolecular nanoarchitecture comprised of Ru(Ⅱ) bis(terpyridine)-modified pillar[5]arene(electron acceptor) and triazole triphenylamine amyl cyanide(electron donor) has been designed and constructed.Through the comparison of diverse solvents and acceptors,the two conditions,i.e.,modification of pillar[5]arene to donor and weak polar solvent are benefit for the occurrence of "efficient PET" because of shorter D-A distance in the presence of pillar[5]arene.Crucially,the fluorescence and PET process of the supramolecular assembly could be further modulated by solvent conversion and another competitive guest.The study provides a supramolecular method to design and construct tunable PET systems and PET-based smart materials.  相似文献   

7.
Liquid quantum dots (QDs) have been used as a fluorescent films sensor. Constructing a macroscopic, responsive, liquid QD system for lysine (Lys) is a challenging task. To achieve a selective macroscopic response towards Lys, herein we present a new strategy for integrating host–guest chemistry into a liquid QD system. Water‐soluble pillar[5]arene WP5 was designed and synthesized as a host. WP5 was introduced onto the surface of PEG1810‐modified QDs by host–guest interactions to obtain liquid WP5‐1810‐QDs. The interaction between WP5 and Lys is stronger than that between WP5 and PEG‐1810, causing WP5 to be released from the 1810‐QDs surface in the presence of Lys, resulting in macroscopic fluorescence quenching. This smart material shows promise in amino acid sensing and separation.  相似文献   

8.
《中国化学快报》2020,31(12):3221-3224
A hybrid system containing a pillar[5]arene unit and ten crown ether moieties was developed. The LCST behavior and thermo-responsiveness were successfully introduced into this pillar[5]arene-crown ether system. Both host–guest interactions and salting-out effect displayed great effects in realizing the supramolecular control over LCST properties and thermo-responsiveness. Compared with the individual macrocycles, this hybrid macrocycle system dramatically amplified the supramolecular control effect over LCST behavior.  相似文献   

9.
Herein, a host–guest interaction–controlled photoproduct created by using cucurbit[7]uril (Q[7])-based pseudorotaxane structures is reported. The assembly exhibited controlled behavior towards the reduction of the ethylene (C=C) bond in the tetrakis(pyridin-4-yl)ethylene (TPyE) guest molecule under UV light irradiation. This can be attributed to the Q[7] encapsulation masking the four pyridinium arms of the guest, which inhibits planarization of the TPyE core to form the cyclization product. In particular, the strong affinity of Q[7] for the butyl-substituted guest (TPyE-4C) led to an unusual radical fluorescence emission of the photoirradiation-triggered intermediate of the guest molecule being observed in aqueous solution. This work provides a valuable paradigm and new insight for macrocycle-based host−guest interactions in supramolecular catalysis and luminescent radical materials.  相似文献   

10.
The first cationic water-soluble pillar[7]arene CWP7 was prepared. 1H NMR, 13C NMR, and MALDI-TOF-MS were performed to provide converging evidences of the structure of obtained CWP7. Host–guest complexation between this novel pillar[7]arene-based host and sodium pyren-1-olate guest G was fully investigated in aqueous solution. Increased fluorescence intensity was observed during the inclusion complexation. Driven by the cooperativity of electrostatic interactions, π-stacking interactions and hydrophilic/hydrophobic interactions, the guest penetrated into the cavity of CWP7 to form a pseudorotaxane-type inclusion complex with relatively high binding affinity.  相似文献   

11.
A novel molecular recognition motif was built between a neutral water soluble pillar[5]arene and decyltrimethylammonium bromide in water. Its thermal-controlled complexation with G1 in water was investigated. Furthermore, based on this new thermal responsive host–guest recognition motif, we further constructed a supramolecular amphiphile between this pillar[5]arene and a trimethylammonium bromide derivative containing an azobenzene group at the other end. This supramolecular amphiphile showed triply-responsiveness, that is, thermal responsiveness of the host–guest complex, photo-responsiveness of the azobenzene group and chemical-responsiveness by adding β-CD.  相似文献   

12.
Cross-linked supramolecular polymers generally show distinct mechanical properties with intriguing functions, which have become one of the hot research topics in recent years. However, the cross-linked supramolecular polymers functionalised with fluorescence resonance energy transfer (FRET) properties have been rarely reported yet. Herein, a new cross-linked supramolecular polymer equipped with efficient FRET property was constructed successfully. The oligo(p-phenylenevinylene)-linked pillar[5]arene dimer (PA-OPV) functioned as a host and energy donor, while four pentanenitrile groups coupled porphyrin (CN-Por) acted as guest with energy acceptor. The supramolecular polymerisation and FRET properties were investigated by using NMR, viscosity, Fluorescence, UV–vis and SEM.  相似文献   

13.
Macrocycles are an important player in supramolecular chemistry. In 2008, a new class of macrocycles, “pillar[n]arenes”, were first discovered. Research efforts in the area of pillar[n]arenes have elucidated key properties, such as their shape, reaction mechanism, host–guest properties, and their versatile functionality, which has contributed to the development of pillar[n]arene chemistry and their applications to various fields. This Minireview describes how pillar[n]arene‐based supramolecular assemblies can be applied to supramolecular gel formation, reactions, light‐harvesting systems, drug‐delivery systems, biochemical applications, separation and storage materials, and surface chemistry.  相似文献   

14.
Host–guest complexation between calix[5]arene and aggregation-induced emission luminogen (AIEgen) can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy to mostly focus on fluorescence emission. The co-assembly of calix[5]arene amphiphiles and AIEgens affords highly emissive supramolecular AIE nanodots thanks to their interaction severely restricting the intramolecular motion of AIEgens, which also show negligible generation of cytotoxic reactive oxygen species. In vivo studies with a peritoneal carcinomatosis-bearing mouse model indicate that such supramolecular AIE dots have rather low in vivo side toxicity and can serve as a superior fluorescent bioprobe for ultrasensitive fluorescence image-guided cancer surgery.  相似文献   

15.
Although highly useful in supramolecular chemistry, pillararenes lack a fluorophore in their skeleton. Here we present BowtieArene, a novel fluorescent dual macrocycle, featuring a central tetraphenylethylene‐derived fluorophore and two pillar‐like, pentagon‐shaped cavities which are comparable to pillar[5]arene. This concisely prepared, figure‐of‐eight molecule exhibits vapor absorption and host–guest capabilities, as well as intriguing switchable fluorescence. The fluorochromism of BowtieArene can be triggered by multiple external stimuli including solvent, vapor, and mechanical force, with excellent reversibility and stability. Experimental and theoretical evidence indicate that the fluorochromism should be closely related to molecular packing.  相似文献   

16.
Chirality‐assisted synthesis (CAS) is a general approach to control the shapes of large molecular strips. CAS is based on enantiomerically pure building blocks that are designed to strictly couple in a single geometric orientation. Fully shape‐persistent structures can thus be created, even in the form of linear chains. With CAS, selective recognition between large host and guest molecules can reliably be designed de novo. To demonstrate this concept, three C‐shaped strips that can embrace a pillar[5]arene macrocycle were synthesized. The pillar[5]arene bound to the strips was a better host for electron‐deficient guests than the free macrocycle. Experimental and computational evidence is provided for these unique cooperative interactions to illustrate how CAS could open the door towards the precise positioning of functional groups for regulated supramolecular recognition and catalysis.  相似文献   

17.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   

18.
Superior artificial light‐harvesting systems (ALHSs) require exceptional capacity in harvesting light and transferring energy. In this work, we report a novel strategy to build ALHSs with an unprecedented antenna effect (35.9 in solution and 90.4 in solid film). The ALHSs made use of a conjugated polymeric supramolecular network (CPSN), a crosslinked network obtained from the self‐assembly of a pillar[5]arene‐based conjugated polymeric host ( CPH ) and conjugated ditopic guests (Gs). The excellent performance of the CPSN could be attributed to the following factors: 1) The “molecular wire effect” of the conjugated polymeric structure, 2) aggregation‐induced enhanced emission (AEE) moieties in the CPH backbone, and 3) high capacity of donor–acceptor energy transfer, and 4) crosslinked structures triggered by the host–guest binding between Gs and CPH . Moreover, the emission of the CPSN could be tuned by using different Gs or varying the host/guest ratio, thus reaching a 96 % sRGB area.  相似文献   

19.
Recently, exploiting a novel supramolecular fabrication pathway have drawn great attention. To this endeavor, we firstly designed and reported an original light-activated platform based on the internal-driven forces of macrocyclic host by hiring the pillar[5]arene as the host molecule(H) and phenazine derivatives acting as an energetic guest molecule(G). Surprisingly, after adding the H solution into G system, the intensive fluorescence emission of the G molecule rapidly decreased under the irra...  相似文献   

20.
Host–guest complexation between calix[5]arene and aggregation‐induced emission luminogen (AIEgen) can significantly turn off both the energy dissipation pathways of intersystem crossing and thermal deactivation, enabling the absorbed excitation energy to mostly focus on fluorescence emission. The co‐assembly of calix[5]arene amphiphiles and AIEgens affords highly emissive supramolecular AIE nanodots thanks to their interaction severely restricting the intramolecular motion of AIEgens, which also show negligible generation of cytotoxic reactive oxygen species. In vivo studies with a peritoneal carcinomatosis‐bearing mouse model indicate that such supramolecular AIE dots have rather low in vivo side toxicity and can serve as a superior fluorescent bioprobe for ultrasensitive fluorescence image‐guided cancer surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号