首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

2.
A protocol for the rapid determination of the absolute configuration and enantiomeric excess (ee) of α‐chiral primary amines with potential applications in asymmetric reaction discovery has been developed. The protocol requires derivatization of α‐chiral primary amines through condensation with pyridine carboxaldehyde to quantitatively yield the corresponding imine. The CuI complex with 2,2′‐bis (diphenylphosphino)‐1,1′‐dinaphthyl (BINAP? CuI) with the imine yields a metal‐to‐ligand charge‐transfer (MLCT) band in the visible region of the circular dichroism (CD) spectrum upon binding. Diastereomeric host–guest complexes give CD signals of the same signs but different amplitudes, allowing for differentiation of enantiomers. Processing the primary optical data from the CD spectrum with linear discriminant analysis (LDA) allows for the determination of the absolute configuration and identification of the amines, and processing with a supervised multilayer perceptron artificial neural network (MLP‐ANN) allows for the simultaneous determination of the ee and concentration. The primary optical data necessary to determine the ee of unknown samples is obtained in two minutes per sample. To demonstrate the utility of the protocol in asymmetric reaction discovery, the ee values and concentrations for an asymmetric metal‐catalyzed reaction are determined. The potential of the application of this protocol in high‐throughput screening (HTS) of ee is discussed.  相似文献   

3.
Two pentameric foldamers, Q5 and Q5C-S , containing a C−F bond were synthesized based on quinoline oligamide foldamers for the measurement of enantiomeric excess and for the determination of absolute configuration of chiral amines, diamines, amino alcohols, and α-amino acid esters. Chiral induction of Q5 was triggered in situ when the chiral analytes reacted with the C−F bond in Q5 by a N-nucleophilic substitution reaction, leading to a linear correlation between the CD amplitude at the region of quinoline chromophores and the ee values of the chiral analytes, which can be used for the ee determination of chiral analytes. Furthermore, the CD intensity of Q5C-S containing a chiral motif at its C-terminus enhances via remote, favorable chiral communication when the chiral induction was triggered in situ by chiral analytes at the N-terminus matches the original helicity of Q5C-S , but decreases via remote, conflicted chiral communication when the chiral induction is triggered in situ by chiral molecules at the N-terminus mismatches the original one. The system can thus be used for determination of the absolute configuration of chiral analytes, given that the chirality of the chiral motif at the C-terminus of Q5C-S is known.  相似文献   

4.
Endowed with chiral channels and pores, chiral metal–organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality‐enriched MOFs with accessible pores. The ability of the materials to form host–guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed‐matrix membranes (MMMs) composed of chirality‐enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation.  相似文献   

5.
A novel LC‐based method for the determination of enantiomeric excess (ee) in a sample mixture has been developed by employing on‐line 2D LC. The orthogonal separation system is composed of an NH2 column as the first dimension to elute the target chiral compound from the crude mixture and a chiral column as the second dimension to determine the ee of the target chiral product. A series of crude mixtures from asymmetric reactions have been directly analyzed without prepurification. Good reproducibility (intra‐ and interday precisions were all under 1.33%) and good accuracy (deviations from ee values determined by 1D HPLC were all <1.03%) have been obtained. Compared with the traditional method for the determination of ee, on‐line 2D HPLC can be used in real time and holds great potential in the time‐saving determination of ee in asymmetric synthesis.  相似文献   

6.
A robust heterogeneous self‐supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine‐cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self‐supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium‐alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed‐bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h?1 were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three‐component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α‐branched aliphatic aldehyde by using the three‐component continuous Strecker reaction.  相似文献   

7.
合成了手性吡啶醇二氧合钼(VI)及二氧合钨(VI)配合物, 采用这两种配合物作为催化剂, 实现了在水中对顺丙烯膦酸(CPPA)的催化不对称环氧化. 这两种催化剂不溶于水, 因此, 这是一个发生在固液两相界面上的异相催化不对称环氧化反应. 其中手性吡啶醇二氧合钼在0 ℃下的对映选择性ee值达到71%; 加入相转移催化剂四正丁基溴化铵, 催化剂的活性和对映选择性有显著提高, 其中手性吡啶醇二氧合钨在50 ℃下ee值由54%提高到78%. 手性吡啶醇二氧合钼和二氧合钨催化剂可以回收再使用.  相似文献   

8.
Optically enriched secondary alkyl iodides were converted into secondary alkyllithium and secondary alkylcopper compounds with very high retention of configuration. Quenching with various electrophiles, including chiral epoxides, provided a range of chiral molecules with high enantiomeric purity (>90 % ee). This method has been applied in an iterative fashion in the total synthesis of (?)‐lardolure in 13 steps and 5.4 % overall yield (>99 % ee, dr>99:1) and siphonarienal in 15 steps and 5.6 % overall yield (>99 % ee, dr>99:1) starting from commercially available ethyl (R)‐3‐hydroxybutyrate (>99 % ee).  相似文献   

9.
A hybrid palladium catalyst assembled from a chiral phosphoric acid (CPA) and thioamide enables a highly efficient and enantioselective β-C(sp3)−H functionalization of thioamides (up to 99 % yield, 97 % ee). A kinetic resolution of unsymmetrical thioamides by intermolecular C(sp3)−H arylation can be achieved with high s-factors. Mechanistic investigations have revealed that stereocontrol is achieved by embedding the substrate in a robust chiral cavity defined by the bulky CPA and a neutral thioamide ligand.  相似文献   

10.
Determination of the absolute configuration (AC) of chiral molecules is a key issue in many fields related to chirality such as drug development, the asymmetric reaction screening, and the structure determination of natural compounds. Although various methods, such as X‐ray crystallography and NMR spectroscopy, are used to determine the AC, a simple and cheap alternative method is always anticipated. So far, electronic circular dichroism (ECD) spectroscopy has been widely used to ascertain the AC and enantiomeric excess (ee) values by applying appropriate organic probes. Here, circularly polarized luminescence (CPL) spectroscopy was applied to determine the AC and ee values of a series of amino acid and amino alcohol. The measurements were conducted by mixing the amino acids or amino alcohols with an achiral 1‐hydroxy‐2‐naphthaldehyde. Upon in situ formation of the Schiff base complexes, the system showed emission enhancement and CPL in the presence of Al3+, whose intensity and sign can be used to assign the chiral sense of the amino acids and amino alcohols. The authenticity of the method was further compared with the established CD spectroscopy, revealing that CPL spectra of formed Al3+ complex were effective to determine the AC of chiral species.  相似文献   

11.
Through a comparative study of three different routes to the synthesis of isatins with a chiral substituent on the nitrogen atom it has been shown that better results for preparing the isatins are achieved using the Sandmeyer (>99% ee, yield 50%) rather than the Stolle method (95% ee, yield 16%). The procedure proposed by Gassman for preparing isatins was unsuitable for the compounds described.  相似文献   

12.
The organocatalytic kinetic resolution of 4‐substituted oxazinones has been optimised (selectivity factor S up to 98, chiral oxazinone ee values up to 99.6 % ( 1 a – g ) and product ee values up to 90 % ( 3 a – g )) in a rational way by applying the Design of Experiments (DoE) approach.  相似文献   

13.
A hybrid palladium catalyst assembled from a chiral phosphoric acid (CPA) and thioamide enables a highly efficient and enantioselective β‐C(sp3)?H functionalization of thioamides (up to 99 % yield, 97 % ee). A kinetic resolution of unsymmetrical thioamides by intermolecular C(sp3)?H arylation can be achieved with high s‐factors. Mechanistic investigations have revealed that stereocontrol is achieved by embedding the substrate in a robust chiral cavity defined by the bulky CPA and a neutral thioamide ligand.  相似文献   

14.
The asymmetric catalytic addition of alcohols (phenols) to non‐activated alkenes has been realized through the cycloisomerization of 2‐allylphenols to 2‐methyl‐2,3‐dihydrobenzofurans (2‐methylcoumarans). The reaction was catalyzed by a chiral titanium–carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)‐1‐(2‐methoxy‐1‐naphthyl)‐2‐naphthoic acid or its derivatives, and a co‐catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT‐CAT) gave various (S)‐2‐methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C.  相似文献   

15.
Trisubstituted allenes with a 3‐(1′‐alkenylidene)‐pyrrolidin‐2‐one motif were successfully deracemized (13 examples, 86–98 % ee) employing visible light (λ=420 nm) and a chiral triplet sensitizer as the catalyst (2.5 mol %). The photocatalyst likely operates by selective recognition of one allene enantiomer via hydrogen bonds and by a triplet‐sensitized racemization process. Even a tetrasubstituted allene (45 % ee) and a seven‐membered 3‐(1′‐alkenylidene)‐azepan‐2‐one (62 % ee) could be enantiomerically enriched under the chosen conditions. It was shown that the axial chirality of the allenes can be converted into point chirality by a Diels–Alder (94–97 % ee) or a bromination reaction (91 % ee). Ring opening of the five‐membered pyrrolidin‐2‐one was achieved without significantly compromising the integrity of the chirality axis (92 % ee).  相似文献   

16.
In this study, optical purity measurement was performed on eight kinds of commercially available pesticide, namely, Dimethenamid-P, Dichlorprop-P, Fluazifop-P butyl, Indoxacarb, Metalaxyl-M, Mecoprop-P, Quizalofop-P ethyl, and Uniconazole-P, in both enantiomer and racemate forms. Chiral separation of each pesticide was achieved by using HPLC with a photodiode-array (PDA) detector and a circular dichroism (CD) detector, which were connected in series. The chiral column used for the enantiomeric separation was a normal phase Chiralpak AD-H column. The mobile phase was n-hexane, with various alcohols added as polar modifiers. The study included investigation of the effects on enantiomeric separation of the percentage of alcohol used, the presence or absence of acid in the mobile phase, and the column temperature, and the optimum detection wavelengths of both PDA and CD detectors. Enantiomeric excess (ee) was calculated as an expression of optical purity. As a result, the ee of some pesticides investigated was approximately (over 95%) in accord with the data provided by manufacturers. However, the ee of Indoxacarb, Uniconazole-P, Quizalofop-P ethyl, and Fluazifop-P butyl was in the range 34.1–94.5%. These results suggest that there is a need to conduct optical purity tests, in addition to a chemical purity test, for optically active pesticides. Presented at BERM-11, October 2007, Tsukuba, Japan.  相似文献   

17.
Rhodium/DuanPhos‐catalyzed asymmetric hydrogenation of aliphatic α‐dehydroamino ketones has been achieved and afforded chiral α‐amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β‐amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α‐amino ketones and chiral β‐amino alcohols.  相似文献   

18.
Spirobicyclic structures are versatile building blocks for functional chiral molecules. An enantioselective synthesis of chiral spirobilactams via a copper‐catalyzed double N‐arylation was developed. Amplification of solution ee by in situ precipitation of the racemate was observed with this method and enantioenriched spirobilactams were obtained with excellent ee values through simple solid–solution phase separation.  相似文献   

19.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

20.
Regioselective [3+3] annulation of alkynyl ketimines with α-cyano ketones for the synthesis of polysubstituted 4H-pyran derivatives with a quaternary CF3-containing center has been realized by using Cu(OAc)2 as the catalyst. The novel strategy tolerates a wide range of α-CF3 alkynyl ketimines and α-cyano ketones with both aryl and alkyl substitutents. A preliminary asymmetric synthesis of chiral product 3 has been attempted by using copper and chiral thiourea as the cocatalyst with excellent yields (86-99 %) and good enantioselectivities (71–78 % ee). Furthermore, product 3 aa could be obtained on a gram-scale reaction with 75 % yield and 99 % ee after recrystallization. Several products were also transformed readily. Control experiments indicate that the reaction involves a process with a base-catalyzed or chiral thiourea-catalyzed Mannich-type reaction followed by a highly regioselective copper-catalyzed ring-closing reaction on the alkynyl moiety in a 6-endo-dig fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号