首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   

2.
Characterization of the textural and structural properties of a sodium form of a delaminated calcic montmorillonite, and of aluminium pillared materials prepared with and without amine pre-adsorption, was made using the adsorption of different probe molecules (nitrogen, toluene, methyl ethyl ketone and 1,1,1-trichloroethane). Due to the delaminated character of the prepared solids, the characterization by X-ray diffraction of the pillared materials was not possible. In this context, the adsorption of probe molecules revealed to be informative since, although the prepared materials were mainly mesoporous solids in consequence of their delaminated nature, when the amine pre-adsorption was used before the pillaring, microporosity was also formed.  相似文献   

3.
The organic solid-state lightemitting materials have attracted more and more attention owing to their promising applications in displays, lasers and optical communications. In contrast to isolated molecule, there are various weak intermolecular interactions in organic solids that sometimes have a large impact on the excited-state properties and energy dissipation pathways, resulting in strong fluorescence/phosphorescence. It is increasingly necessary to reveal the luminescence mechanism of organic solids. Here, we briefly review how intermolecular interactions induce strong normal fluorescence, thermally activate delayed fluorescence and room-temperature phosphorescence in organic solids by examining changes in geometry, electronic structures, electron-vibration coupling and energy dissipation dynamics of the excited states from isolated to aggregated molecules. We hope that the review will contribute to an in-depth understanding of the excited state properties of organic solids and to the design of excellent solid-state light-emitting materials.  相似文献   

4.
Fibre reinforced NiAl offers new possibilities for the development of high strength structural materials of low density applicable in gas turbines at high operating temperatures. The properties of composite materials are strongly influenced by the strength of the fibre–matrix interface. In addition, if fibre and matrix differ in their thermal expansion coefficients, a well controlled interface reaction at high temperature changes is demanded. Therefore, two layers consisting of BN and Hf were embedded between a sapphire fibre and NiAl and heated at 1350 °C to find a compromise between adhesion and ductility. The control and characterization of the reaction zone is essential for the development of these new materials. Especially, the characterization of the fibre-coating interface is a challenge. The different hardness of fibre and coating makes it nearly impossible to use a conventional cross-section preparation. Further, the small dimension of the reaction zone requires the use of analytical techniques providing high lateral resolution. In order to accomplish these requirements, a newly developed technique FIB (Focused Ion Beam)-EPMA (Electron Probe Microanalysis) was combined with XRD (X-ray diffraction). XRD was performed for the identification of the phases. The reaction zone was exposed by a special FIB preparation technique and examined by surface-sensitive EPMA. This allowed to determine the spatial distribution of the different phases.  相似文献   

5.
A series of Poly vinyl butyral–Poly (acrylic acid) (PVB-PAA) based form-stable phase change materials (PCMs) have been prepared for the use of thermal energy storage applications. Six types of formulations containing five different fatty alcohols were prepared by adding PVB to PAA. Using electrospinning to fabricate nanofibrous mats, our aim was to investigate their properties as form-stable PCMs. Fatty alcohols, 1-Tetradecanol, 1-Hexadecanol, 1-Octadecanol, 1-Eicosanol and 1-Docosanol, were added separately to base formulation. The structural characterization tests were performed by ATR-FTIR spectroscopy. Morphological tests were conducted using Scanning Electron Microscope (SEM). Thermal performances and phase change behaviors were tested by thermogravimetric analysis system (TGA) and differential scanning calorimetry (DSC). The heating cycle phase change enthalpy is measured between 223 and 241?J/g, and the freezing cycle phase change enthalpy is found between 215 and 239?J/g. The main decomposition PVB-PAA based PCMs started at 220?°C. This study suggested that PVB-PAA based PCMs possess well phase change properties and they were found to have an applicable temperature range. With the presented results these materials promise a great potential in thermal energy storage applications.  相似文献   

6.
Abstract

The fundamental studies in phosphate bonding carried out by Kingery (1) in the USA in early fifties gave rise to worldwide investigations and practical application of a new type of refractories and insulating materials. The use of phosphate binders made it possible to develop a unique class of refractories and insulating materials with principally novel technical properties. Theoretical investigations and power-saving nonwaste technology of their production has been developed in Orgtehstrom from the early seventies. The result of these activities was industrial production of phosphate bonded refractories and insulating materials on a commercial basis; the technology was introduced in all ceramics and glass works of construction material industry of the Latvian SSR.  相似文献   

7.
Functional phase‐change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous–crystalline transformation of materials like Ge‐Sb‐Te find use in advanced applications such as information storage. Reversible amorphous–crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity.  相似文献   

8.
Heterogeneous catalysts often consist of an active metal (oxide) in close contact with a support material and various promoter elements. Although macroscopic properties, such as activity, selectivity and stability, can be assessed with catalyst performance testing, the development of relevant, preferably quantitative structure–performance relationships require the use of advanced characterisation methods. Spectroscopic imaging in the hard X-ray region with nanometer-scale resolution has very recently emerged as a powerful approach to elucidate the hierarchical structure and related chemistry of catalytic solids in action under realistic reaction conditions. This X-ray-based chemical imaging method benefits from the combination of high resolution (∼30 nm) with large X-ray penetration and depth of focus, and the possibility for probing large areas with mosaic imaging. These capabilities make it possible to obtain spatial and temporal information on chemical changes in catalytic solids as well as a wide variety of other functional materials, such as fuel cells and batteries, in their full complexity and integrity. In this concept article we provide details on the method and setup of full-field hard X-ray spectroscopic imaging, illustrate its potential for spatiotemporal chemical imaging by making use of recent showcases, outline the pros and cons of this experimental approach and discuss some future directions for hierarchical functional materials research.  相似文献   

9.
Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes‐AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes‐AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA‐ICP‐MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs‐protein binding (what is not possible using SDS‐PAGE).  相似文献   

10.
Functional phase‐change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous–crystalline transformation of materials like Ge‐Sb‐Te find use in advanced applications such as information storage. Reversible amorphous–crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity.  相似文献   

11.
 Meso-and nanoporous solids used as supports for highly dispersed metal or semiconductor nanoparticles represent a promising class of materials for potential nanoscale devices. The electrical and optical properties of zeolite Y supported SnO2 nanoparticles were studied by use of impedance and UV diffuse reflectance spectroscopy. When subjected to reductive and oxidative atmospheres the samples reveal sensitive changes in their properties which are different to that of bulk SnO2. Received: 18 June 1996 Accepted: 29 August 1996  相似文献   

12.
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro‐ or methyl‐substituted 2‐[3‐(N‐phenylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo‐, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron‐rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest‐occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2‐phenylpyridine ligands. Remarkably, the excited‐state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red. Electrophosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance can be fabricated based on these materials, which show a maximum current efficiency of approximately 43.4 cd A?1, corresponding to an external quantum efficiency of approximately 12.9 % ph/el (photons per electron) and a power efficiency of approximately 33.4 Lm W?1 for the best device. The present work provides a new avenue for the rational design of multifunctional iridium–carbazolyl electrophosphors, by synthetically tailoring the carbazolyl pyridine ring that can reveal a superior device performance coupled with good color‐tuning versatility, suitable for multicolor‐display technology.  相似文献   

13.
Natural fibers are promising alternatives to synthetic fibers because of their sustainability, low environmental footprint and specific properties desirable for a wide range of technical engineering applications. The industrial implementation of fine grade natural bamboo fibers, including technical (100–200 microns) and elementary fibers (<30 microns) has been of increasing interest in recent times because these fibers offer a unique set of properties including high tensile strength, antibacterial and UV absorption. However to date, very little scientific effort has been devoted to fully understand the inter-correlation between their mechanical, physico-chemical, microstructural and morphological properties. In this paper, we report for the first time the structure–property relationship of elementary bamboo fibers. The impact of the inner microstructural organization of fibers (including the micro-fibrils angle) and physico-chemical factors such as the cellulose content and crystallinity index, on the tensile performance of these fibers is discussed in detail. This work also provides an insight into the application of bamboo fibers as natural and low-cost sorbent material for the removal of Cu2+ metal ions from model industrial wastewater. The metal ion adsorption properties of the fibers are correlated to surface energy analysis obtained from inverse gas chromatography.  相似文献   

14.
The production of graphene from various sources has garnered much attention in recent years with the development of methods that range from “bottom‐up” to “top‐down” approaches. The top‐down approach often requires thermal treatment to obtain a few‐layered and lowly oxygenated graphene sheets. Herein, we demonstrate the production of graphene through oxidation and thermal‐reduction/exfoliation of two sources of differently orientated graphene sheets: multiwalled carbon nanotubes (MWCNTs) and stacked graphene nanofibers (SGNFs). These two carbon‐nanofiber‐like materials have similar axial (length: 5–9 μm) and lateral dimensions (diameter: about 100 nm). We demonstrate that, whereas SGNFs exfoliate along the lateral plane between adjacent graphene sheets, carbon nanotubes exfoliate along its longitudinal axis and leads to opening of the carbon nanotubes owing to the built‐in strain. Subsequent thermal exfoliation leads to graphene materials that have, despite the fact that their parent materials exhibited similar dimensions, dramatically different proportions and, consequently, materials properties. Graphene that was prepared from MWCNTs exhibited dimensions of about 5000×300 nm, whereas graphene that was prepared from SGNFs exhibited sheets with dimensions of about 50×50 nm. The density of defects and oxygen‐containing groups on these materials are dramatically different, as are the electrochemical properties. We performed morphological, structural, and electrochemical characterization based on TEM, SEM, high‐resolution X‐ray photoelectron spectroscopy, Raman spectroscopy, and cyclic voltammetry (CV) analysis on the stepwise conversion of the target source into the exfoliated graphene. Morphological and structural characterization indicated the successful chemical and thermal treatment of the materials. Our findings have shown that the orientation of the graphene sheets in starting materials has a dramatic influence on their chemical, material, and electrochemical properties.  相似文献   

15.
We use aerosol techniques to investigate the cohesive and granular properties of solids composed of colloidal semiconductor nanocrystals (quantum dot solids). We form spherical agglomerates of nanocrystals with a nebulizer and direct them toward a carbon substrate at low (~0.01 m/s) or high (~100 m/s) velocities. We then study the morphology of the deposit (i.e., the "splat") after impact. By varying the size of the agglomerate and the spacing between the nanocrystals within it, we observe influences on the mechanical properties of the quantum dot solid. We observe a liquid-to-solid transition as the nanocrystals become more densely packed. Agglomerates with weakly interacting nanocrystals exhibit liquidlike splashing and coalescence of overlapping splats. More dense agglomerates exhibit arching and thickening effects, which is behavior typical of granular materials.  相似文献   

16.
Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers.  相似文献   

17.
This work reports the preparation and characterization of new polymeric ionomers based on etylene–propylene–diene copolymer (EPDM) with a high norbornene content. The sulfonation level was determined with X‐ray photoelectron spectroscopy, and the microstructural characterization was obtained through differential scanning calorimetry and dynamic mechanical analysis. In addition, the effects of certain plasticizers and polymers on the microstructures and conducting properties of these materials were studied, with special attention paid to the latter because of the interest aroused by these materials as membranes in polymer fuel cells. On the basis of the results, some of the synthesized membranes could be used for fuel cells because of their high conductivity (≥10?2 S/cm) and good dimensional stability (any shrinkage observed). © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1017–1026, 2001  相似文献   

18.
Applications of metal-organic frameworks (MOFs) require close correlation between their structure and function. We describe the preparation and characterization of two zinc MOFs based on a flexible and emissive linker molecule, stilbene, which retains its luminescence within these solid materials. Reaction of trans-4,4'-stilbene dicarboxylic acid and zinc nitrate in N,N-dimethylformamide (DMF) yielded a dense 2-D network, 1, featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in N,N-diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure, 2. This framework consists of two interpenetrating cubic lattices, each featuring basic zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both 1 and 2 correlate with the local ligand environments observed in the crystal structures. Steady-state and time-resolved spectroscopic measurements reveal that the stilbene linkers in the dense structure 1 exhibit a small degree of interchromophore coupling. In contrast, the stilbenoid units in 2 display very little interaction in this low-density 3-D framework, with excitation and emission spectra characteristic of monomeric stilbenes, similar to the dicarboxylic acid in dilute solution. In both cases, the rigidity of the stilbene linker increases upon coordination to the inorganic units through inhibition of torsion about the central ethylene bond, resulting in luminescent crystals with increased emission lifetimes compared to solutions of trans-stilbene. The emission spectrum of 2 is found to depend on the nature of the incorporated solvent molecules, suggesting use of this or related materials in sensor applications.  相似文献   

19.
This study examined several candidate raw materials for use as the reactive agents in developing new oxygen carriers for chemical looping combustion. A thermogravimetric analyzer, Mettler TGA/DSC1, was used to measure oxygen capacity and relative reaction rates during oxidation and reduction cycles. The reactive gases used were 4 % hydrogen in inert gas for the reduction cycle and air for the oxidation cycle, with a nitrogen purge between reduction and oxidation cycles. Samples were typically tested for at least ten cycles to study any change in reactivity or oxygen capacity. Reaction temperatures tested ranged from 700 to 900 °C. Materials tested included an iron oxide ore, iron-based tailings from a metals extraction process, a nickel oxide supported on nickel aluminate and a copper oxide plus inert material system. The materials varied in their oxygen capacity, reactivity and the change in properties with repeat cycles. Of the samples tested, the NiO–NiAl2O4 oxygen carrier demonstrated the fastest reaction in reduction and oxidation and had stable properties over ten cycles. The iron oxide ore sample performance declined significantly with repeat cycles. The performance of the iron-based tailings declined slightly over the ten cycles. The addition of inert second phase materials to CuO improved the performance by inhibiting sintering of the oxide at the operating temperature. Although the reactivity of the tailings and iron hydroxide samples was not as high as the NiO based oxygen carrier, they are promising carrier materials due to their low cost and lower toxicity relative to nickel. Future experiments will look at CO and CH4 reduction reactions using the TG, surface characterization using SEM, XRD, and cyclic testing in a batch fluidized bed reactor.  相似文献   

20.
The novel crystallization properties of nano-materials represent a great challenge to researchers across all disciplines of materials science. Simple binary solids can be found to adopt unprecedented structures, when confined into nanometer-sized cavities, such as the inner cylindrical bore of single-walled carbon nanotubes (SWNT). Lanthanum iodide was encapsulated within SWNTs and the resulting encapsulation composite was analyzed using energy-dispersive X-ray microanalysis (EDX) and high-resolution transmission electron microscopy (HRTEM) imaging techniques, to reveal a one-dimensional crystal fragment, with the stoichiometry of LaI2, crystallizing in the structure of LaI3 with one third of the iodine positions unoccupied. A complete characterization of the encapsulation composite was achieved using an enhanced image restoration technique, which restores the object wave from a focal series of HRTEM images, providing information about the precise structural data of both filling material and host SWNT, and thereby enabling the identification of the SWNT chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号