首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC8‐PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γeq) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γeq values were significantly lower (by up to 10 mN m?1) when PFH was present in the gas phase. The efficacy of PFH in decreasing γeq depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30 %) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface‐tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC8‐PC at the PFH‐saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface.  相似文献   

2.
Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by CnF2n+1CmH2m+1 (FnHm) diblocks spontaneously self‐assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the “collapse” of their monolayers at ~30 Å2. For molecular areas A between 30 and 10 Å2, a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 Å2, surface pressure increases again, reaching up to ~48 mN m?1 before the film eventually collapses. Brewster angle microscopy and AFM indicate a several‐fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression–expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline‐like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure‐driven transformations of films of self‐assembled objects are thus provided. These observations further illustrate the powerful self‐assembling capacity of perfluoroalkyl chains.  相似文献   

3.
In this work, the V‐shaped microfluidic junction (VMJ) device technique with gas/liquid interface was used to prepare textured polymer nanospheres from bubble bursting for drug delivery. The polymer/dye solution, N2 gas, and a volatile liquid, perfluorohexane (PFH) were simultaneously fed using the tubes into the VMJ device. A high‐pressure injection of N2 gas into the VMJ interacts with PFH and ethanol leading to the preparation of a microbubble system. Once bubbles are ejected from the VMJ outlet, nanospheres calve from the parent bubble. The collection temperature and the N2 gas pressure play a key role in the mechanism by which nanospheres are formed. In addition, the volatile liquid, PFH, is described as a significant surface modifier. The influence of the N2 gas pressure, collection temperature, and the volatile liquid flow rates on nanospheres size distribution and surface roughness were investigated using scanning electron microscopy. The results revealed that the N2 gas pressure and collection temperature are crucial in tailoring the size distribution of the nanospheres and that the nanospheres textured with PFH had significantly rougher surface. Nanospheres coated with Evans blue dye were prepared, and those collected at high temperature exhibited a very different dye release profile compared with those collected at lower temperatures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Heterocyclic aromatic compounds have attracted considerable attention because of their high carrier mobility that can be exploited in organic field‐effect transistors. This contribution presents a comparative study of the packing structure of 3,6‐didodecyl‐12‐(3,6‐didodecylphenanthro[9,10‐b]phenazin‐13‐yl)phenanthro[9,10‐b]phenazine (DP), an N‐heterocyclic aromatic compound, on Au(111) and highly ordered pyrolytic graphite (HOPG). High‐resolution scanning tunneling microscopy (STM) combined with atomistic simulations provide a picture of the interface of this organic semiconductor on an electrode that can have an impact on the field‐effect transistor (FET) performance. DP molecules adsorb with different conformational isomers (R/S: trans isomers; C: cis isomer) on HOPG and Au(111) substrates. All three isomers are found in the long‐range disordered lamella domains on Au(111). In contrast, only the R/S trans isomers self‐assemble into stable chiral domains on the HOPG surface. The substrate‐dependent adsorption configuration selectivity is supported by theoretical calculations. The van der Waals interaction between the molecules and the substrate dominates the adsorption binding energy of the DP molecules on the solid surface. The results provide molecular evidence of the interface structures of organic semiconductors on electrode surfaces.  相似文献   

5.
Highly transparent silica-surfactant nanocomposite films containing photosynthetic pigments have been successfully formed through the solubilization of chlorophyll a (Chl a) into surfactant micelles. The UV-vis absorption spectra indicated that a large amount of Chl a were transformed into pheophytin a in the films. These photosynthetic pigments were well dispersed in the surfactant assemblies and their chlorin rings were exposed to the surface of silica layers. Even under an air atmosphere, the photostability of immobilized pigments was largely improved in comparison with that in a homogeneous Chl a solution. Because both Chl a and pheophytin a molecules are effective for the photosensitive charge separation, the present film system is very suitable for heterogeneous immobilizing media for photosynthetic pigments from the viewpoint of in vitro biomimetic devices for solar energy conversion.  相似文献   

6.
A Langmuir trough for studying monolayers on a mercury surface was constructed usingT. Smith's design. The surfactant (long-chain alkyl-trimethylammonium compounds) in aqueous solution were spread on a clean mercury surface in an atmosphere of helium, and the surface pressure re-areaA and thickness of surface filmd-areaA curves were obtained. The-A curves were characterized by the appearance of multiple inflection points and plateaus, being explained as stepwise dense surface packing of molecules, and the formation of multilayers by film compression with long axes of molecules lying flat on the mercury surface.  相似文献   

7.
Preformed cobalt stearate (CoSt) molecules form a film on the water surface, which with barrier compression shows multilayers of different heights that are evidenced from the structures of the films deposited on hydrophilic silicon (0 0 1) substrates by using a horizontal deposition technique at different positions of the surface pressure (π)–specific molecular area (A) isotherm. In-plane morphology and out-of-plane structures are obtained from the atomic force microscopy (AFM) and X-ray reflectivity studies. Electron density profiles (EDPs), extracted from the reflectivity data, show that the monolayer coverage is maximum when π is far before the collapse point (πc) but with barrier compression domains of multilayers start to form even before πc. After πc, two different bilayer repeat distances have been observed from the two different series of the Bragg peaks implying the formation of domains by both the tilted and untilted CoSt molecules. Far after πc, reflectivity decreases rapidly and morphology of the deposited films changes totally. Structures before and after πc of the CoSt film have also been obtained by changing the pH of the subphase water. From all the structural information it is clear that the preformed CoSt film collapses in a different way in comparison with the collapse of the standard cobalt stearate monolayer where cobalt stearate molecules were formed at the air–water interface. Reasons for obtaining different structures on the water surface with barrier compression have been proposed.  相似文献   

8.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most effective human pathogens. The mycobacterial cell envelope contains lipoglycans, and of particular interest is lipoarabinomannan (LAM), one of the most potent mycobacterial immunomodulatory molecules. The importance of lipoarabinomannan (LAM) in the immunopathogenesis of tuberculosis has incited structural studies on this molecule to (1) establish a precise structural model of the molecule and (2) decipher the structure/function relationships. In recent years, we have focused on the two domains essential for LAM biologic activities: the mannosyl-phosphatidyl-myo-inositol anchor and the caps. We review here the recent procedures developed for the structural analysis of these domains.  相似文献   

9.
Single dye molecules incorporated into a mesoporous matrix can act as highly sensitive reporters of their environment. Here, we use single TDI molecules incorporated as guests into hexagonal mesoporous films containing highly structured domains. The dye molecules allow us to map the size of these domains which can extend to over 100 microm. Investigation of the translational and orientational dynamics via single molecule fluorescence techniques gives structural as well as dynamical information about the host material. In an air atmosphere, the guest molecules show no movement but perfect orientation along the pore direction. The diffusion of the TDI molecules can be induced by placing the mesoporous film in a saturated atmosphere of chloroform. In single molecule measurements with very high positioning accuracy (down to 2-3 nm) the movement of molecules could be observed even between neighboring channels. This reveals the presence of defects like dead ends closing the pores or small openings in the silica walls between neighboring channels, where molecules can change from one channel to the next. A statistical analysis demonstrates that the diffusion of TDI in the mesoporous film cannot be described with a 1D-random diffusion but is more complicated due to the presence of adsorption sites in which the TDI molecules can be occasionally trapped.  相似文献   

10.
The deformation energetics of highly extended poly(methylene) segments with conformational defects of the kink and jog types, is investigated by molecular mechanics calculations. The deformation potential displays abrupt discontinuities as a result of sudden gauche‐to‐trans conformational transitions accompanied by a release of the elastic energy stored in all valence parameters. By stretching, the chain defects are sequentially annihilated, with the weakest elements interconverting first. Due to sudden drops in force the calculated force–length curves F(R) display a sawtooth‐like profile. The force jumps define a maximum load Fc that defect chains can bear prior to conformational “yielding”. The Fc in the range about 0.7–1.1 nN is found in highly extended multikink chains. The results suggest that the sawtooth‐like profile can be a common feature of mechanochemistry of bridging polymers with the restricted number of available conformations. A similar pattern of F(R) curves were previously observed at stretching and sequential unfolding of compact structural domains in biomacromolecules. Further, the calculations predict a distinct reduction of the longitudinal Young's modulus E with increasing concentration of kinks in molecules.  相似文献   

11.
Properties of the monolayers of collagen isolated from the sclera of pig's eye are studied at the air–water interface with increasing tert-butanol or n-hexanol concentrations in a subphase. In the case of aqueous n-hexanol solutions, its adsorption on the subphase surface results in the formation of mixed monolayer whose properties depend on n-hexanol concentration in the subphase and the ratio between the number of alcohol and collagen molecules in the monolayer. At higher n-hexanol surface concentration, the phase separation of the monolayer into the domains of the condensed phase of alcohol and fibrous collagen occurs. A decrease in water activity in the presence of tert-butanol leads to a drastic reduction of collagen surface activity. This effect can be explained by both the constrained collagen spreading on the surface of tert-BuOH solutions and adsorption of alcohol molecules on collagen resulting in macromolecule hydrophilization. Alcohol critical concentrations are disclosed above which collagen monolayers are not formed.  相似文献   

12.
The stable bubble domains generated by mixing 10% of chiral molecules into an azobenzene liquid crystal (LC)-doped nematic host can be optically controlled by a violet laser beam (415 nm). The photon-induced reversible trans–cis photo-isomerisation of azobenzene changes the helical twisting power (HTP) of LC mixtures in which the HTP of cis-azobenzene LC is lower than trans-azobenzene LC. Under the irradiation of an optical field (>20 mW cm???2), the helical pitch distance, which is inverted proportional to the HTP, increases and the bubble domains disappear. Immediate obstruction of laser light irradiation initiates cholesteric nucleation, merging of domains and the subsequent generation of stably dispersed bubble domains.  相似文献   

13.
Films of mesoscopic domains self‐assembled from fluorocarbon/hydrocarbon diblock copolymers (FnHm ) at the air/water interface were found to display highly elastic behavior. We determined the interfacial viscoelasticity of domain‐patterned FnHm Langmuir monolayers by applying periodic shear stresses. Remarkably, we found the formation of two‐dimensional gels even at zero surface pressure. These monolayers are predominantly elastic, which is unprecedented for surfactants, exhibiting gelation only at high surface pressures. Systematic variation of the hydrocarbon (n =8; m =14, 16, 18, 20) and fluorocarbon (n =8, 10, 12; m =16) block lengths demonstrated that subtle changes in the block length ratio significantly alter the mechanics of two‐dimensional gels across one order of magnitude. These findings open perspectives for the fabrication of two‐dimensional gels with tuneable viscoelasticity via self‐assembly of mesoscale, low‐molecular‐weight materials.  相似文献   

14.
Aspects of size, structural (im)perfection, inner density, and guest molecule loading capacity of dendronized polymers (DPs) of high generation (6≤g≤8) in aqueous solution are studied using electron paramagnetic resonance spectroscopy on amphiphilic, spin‐labeled guest molecules. The results show that the interior of the charged DPs is strongly polar, especially in comparison to their lower generation (1–4) analogues. This is a direct sign that large amounts of water penetrate the DP surface, reflecting the structural (im)perfections of these high‐generation DPs and much lower segmental densities than theoretically achievable. Images obtained with atomic force microscopy reveal that the high‐generation DPs do not aggregate and give further insights into the structural imperfections. Electron paramagnetic resonance spectroscopic data further show that despite their structural imperfections, these DPs can bind and release large numbers of amphiphilic molecules. It is concluded that attention should be paid to their synthesis, for which a protocol needs to be developed that avoids the relatively large amount of defects generated in the direct conversion of a generation g=4 DP to a generation g=6 DP, which had to be used here.  相似文献   

15.
16.
The adsorption of α1-acid glycoprotein into bilirubin/cholesterol mixed monolayers with various component molar ratios is investigated using surface pressure-area (π-A) isotherms and (dπ/dA)-A curves. The results showed that the surface area per molecule increased after the adsorption/insertion of glycoprotein molecules into the monolayers. The compressibility of mixed monolayers increased as a result of hydrogen bonding between bilirubin and glycoprotein molecules, while the interactions between bilirubin and cholesterol are weakened. The adsorption of glycoprotein into a monolayer induced changes in molecular surface area depending on the surface pressure and molar fraction of bilirubin. The transmission electron microscopy of mixed monolayers confirmed the insertion of glycoprotein particles of spherical shape with an average diameter of about 80 nm into the monolayer. The text was submitted by the authors in English.  相似文献   

17.
The motion of a single point defect in a cylindrical cavity filled with a nematic liquid crystal is described by solving numerically the simplified equations of nematodynamics. Perfect homeotropic anchoring for the director on the lateral boundary would result in the creation of domains with equal elastic energy, escaped upwards or downwards along the cavity axis and separated by point defects of strength ± 1. Defects do not move as long as they are sufficiently far apart. However, small deviations from homeotropic anchoring remove this degeneracy and the energetically favourable domains start to expand at the expense of the others, thus setting the defects in motion along the tube. We present a new numerical approach, which neglects the backflow, for studying the influence of both the pretilt and the elastic anisotropy (K 33K 11) on the motion of a defect. We show how even very small pretilt angles (≈1°) result in speeds observed in experiments. For a moderate elastic anisotropy, the velocity of a +1 defect equals the velocity of a -1 defect, whereas for K 33?K 11 a + 1 defect moves faster than a -1 defect. For small pretilts we confirm a good qualitative agreement with an existing analytical approach, which proves inaccurate for large pretilts.  相似文献   

18.
Individual polyethylene molecules have been imaged in the electron microscope. Preparative difficulties are overcome by the following procedures. (1) The polymer is dissolved in n-hexadecane at 130°C; (2) the solution is deposited on a cooled substrate by spraying in an atmosphere of cold nitrogen; (3) the deposited polymer molecules were shadowed by platinum. Molecular weights obtained are in good agreement with those from light scattering.  相似文献   

19.
The dilational properties of anionic gemini surfactants alkanediyl-α,ω-bis(m-octylphenoxy sulfonate) (C8CmC8) with polymethylene spacers at the water–air and water–decane interfaces were investigated by oscillating barriers and interfacial tension relaxation methods. The influences of oscillating frequency and bulk concentration on the dilational properties were explored. The experimental results show that the linking spacer plays an important role in the interfacial dilational properties. The moduli pass through one maximum for all three gemini surfactants at both water–air and water–decane interfaces. However, the values of moduli at the water–air interface are obviously higher than those at the water–decane interface because the sublayer formed by spacer chains will be destroyed by the insertion of oil molecules. Moreover, with the increase of spacer length, the surface adsorption film becomes more viscous at high concentration, which can be attributed to the process involving the formation of the sublayer. On the other hand, the spacers of the adsorbed C8C6C8 molecules will extend into the oil phase when the interface is compressed. As a result, the interfacial film becomes more elastic with the increase of spacer length at high concentration. The experimental results obtained by the interfacial tension relaxation measurements are in accord with those obtained by the oscillating barriers method.  相似文献   

20.
In this study, the structural factors controlling the yield in isotactic polypropylene materials were theoretically investigated. To describe the yielding behavior of spherulitic polypropylenes, we introduced a new structural unit, lamellar clusters, which are several stacked lamellae bound by tie molecules. It was shown that tie molecules between adjacent lamellar clusters produce a concentrated load acting on the cluster surface, leading to the bending deformation of the lamellar clusters. The yielding behavior can be explained if one assumes that the disintegration of the lamellar clusters occurs when the elastic‐strain energy stored by the bending deformation reaches a critical value. By applying the fracture theory of composites to a system consisting of lamellar clusters and tie molecules, we found the yield stress σy to be proportional to , in which EY is the Young's modulus and Uy is the yield energy. The proportional coefficient between σy and depends only on the cluster size and tie‐molecule density, so this proportionality is expected to be true for other spherulitic semicrystalline polymers such as polyethylenes, being independent of temperature and tensile rate. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1037–1044, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号