首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dots(CDs) have been considered as a marvellous photoluminescence(PL) material, and their PL mechanism remains debatable. The carbon core, as an essential part of CDs, apparently plays an intricate role in the PL of CDs. However, the influence of the core on the PL and the relationship between the core and fluorescence moiety are still unclear. Here, we investigated the influence of carbon cores with different sizes on the rotational motion of fluorescence moieties to determine the relationship between carbon cores and fluorescence moieties. CDs with different size distributions were synthesized by controlling carbonization time. The core sizes and rotational correlation time(RCT) of the CD samples were measured by transmission electron microscopy(TEM) and fluorescence anisotropy measurement, respectively. And the rotating unit radius were calculated from the RCT. The experimental results show that the rotational motion of the fluorescence moiety is independent of the carbon core sizes and it possesses total rotational freedom. This work is helpful for understanding the connection between the carbon core and fluorescence moiety and its influence on the PL properties of CDs.  相似文献   

2.
Heavy oil is treated as an undesirable raw material in traditional refining markets because of its low yield. However, its rich natural aromatic structure and heteroatomic compounds make it possible to be a precursor to large-scale production of carbon materials. Using heavy oil and three SDA products as precursors, we synthesized highly fluorescent multi-color carbon dots (CDs) by hydrothermal method, which can precisely control the photoluminescence wavelength in the range of 350?650 nm. The synthesized carbon dots have the advantages of good long-term stability and stability under extreme pH conditions and low price. Importantly, the carbon dots synthesized with asphalt as the precursor have the highest fluorescence quantum yield. X-ray photoelectron spectroscopy (XPS) is used to elucidate the effects of different precursor on emission color change and photoluminescence quantum yield (PLQY), thus providing a controlled tuning of the system for the functionalization of CDs. And we further used the CDs in macrophage labeling. This pathway gives a reliable and repeatable industry possibility and may boost the applications of CDs into reality.  相似文献   

3.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co-doped carbon dots (F,N-doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N-doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue-shift of the fluorescence emission from 586 nm to 550 nm. F,N-doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N-doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure-triggered aggregation-induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high-pressure conditions and enhances their anti-photobleaching.  相似文献   

4.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

5.
《化学:亚洲杂志》2017,12(18):2343-2353
Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water‐soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the “giant red‐edge effect”. As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength‐dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.  相似文献   

6.
We report on the ensemble and single-molecule (SM) dynamics of F?rster resonance energy transfer (FRET) in a multichromophoric rigid polyphenylenic dendrimer (triad) with spectrally different rylene chromophores featuring distinct absorption and emission spectra which cover the whole visible spectral range: a terrylenediimide (TDI) core, four perylenemonoimides (PMIs) attached at the scaffold, and eight naphthalenemonoimides (NMIs) at the rim. For FRET from PMI to TDI taking place with an efficiency of 99.5%, single triad molecules optically excited at 490 nm show fluorescence exclusively from the TDI side in the beginning of their emission. On 360-nm excitation, NMI chromophores transfer their excitation energy either directly or in a stepwise fashion to the core TDI, the latter case involving scaffold-substituted PMIs as intermediate acceptors. Indeed, SM experiments on 360-nm excitation evidence highly efficient FRET from NMI chromophores to the TDI core since individual triad molecules show fluorescence exclusively either from TDI or from an intermediate (oxidized) species but never from PMI. Because PMI and TDI are chromophores with high fluorescence quantum yields and high resistance to photobleaching compared to NMI, 360-nm excitation of a single triad molecule leads to bleaching of NMI chromophores with no chance for PMI to be observed. The spatial positioning and the spectral properties of the chosen rylene chromophores make this multichromophoric system an efficient light collector, able to capture light over the whole visible spectral range and to transfer it finally to the core TDI, the latter releasing it as red fluorescence.  相似文献   

7.
A novel approach for fabricating color-adjustable carbon dots (CDs) is proposed via hydrothermal treatment of p-aminobenzenesulfonic acid and o-, m-, or p-phenylenediamines, respectively. The as-synthesized CDs can emit blue, green, and orange fluorescence and are named b-CDs, g-CDs, and o-CDs, respectively. All of them have strict excitation independence and excellent photostability. Variations of photoluminescence emitting them are attributed to the difference in their particle size, the degree of oxidation, and the content of N-related states on their surface. Furthermore, these multicolor CDs have been used as fluorescents inks, which perform well in anti-counterfeiting and information security.  相似文献   

8.
Four types of carbon dots (CDs) with various color (blue, green, yellow, and red) emissions have been synthesized under solvent-free conditions from citric acid and different nitrogen sources (DMF, urea, ethanamide, and formamide). By detailed characterization and comparison, it is confirmed that the graphitized sp2 conjugated domain and surface functional groups such as C−O and C=N play synergetic roles in adjusting the fluorescence properties. Notably, the size effect is not the dominant mechanism to achieve multi-color fluorescence emissions in this work. The structural configuration of the carbon dots further influences the energy band structure, as demonstrated in simplified energy level diagrams. An absorption peak at approximately 560 nm appears in the visible light region for red-emitting CDs, assigned to an n→π* transition of the aromatic structure, thus introducing a new surface state energy level, resulting in a reduction in the energy of electron transition and the expansion into the visible region of the UV/Vis spectrum. Taking advantage of the diverse absorption and emission properties, different CDs/TiO2 binary composites are obtained for photocatalytic degradation of organic dyes, and it is found that the absorption range in terms of visible light and the band gap of the carbon dots make a difference to the photocatalytic performance of the composites.  相似文献   

9.
Carbon quantum dots (CQDs) are a new class of fluorescence small carbon nanoparticles with a particle size of less than 10 nm and have vast applications in the field of bioimaging, biosensing and disease-detection. These are promising materials for nano-biotechnology since it has smaller particle size, excellent biocompatibility and excitation wavelength dependent photoluminescence (PL) behavior, photo induced electron transfer, chemical inertness and low toxicity. These materials have excellent fluorescent properties such as broad excitation spectra, narrow and tunable emission spectra, and high photostability against photo bleaching and blinking than other fluorescent semiconductor quantum dots. This review article demonstrate the recent progress in the synthesis, functionalization and technical applications of carbon quantum dots using electrochemical oxidation, combustion/thermal, chemical change, microwave heating, arc-discharge, and laser ablation methods from various natural resources. Natural carbon sources are used for the preparation of CQDs due to its low cost, environmental friendly and widely available.  相似文献   

10.
A large amount of emerging research on carbon dots (CDs) has been gradually improving the understanding of their structures, properties and emission mechanism. Distinct from the dominating status of quantum confinement effect in quantum dots, CDs always suffer from the complicated optical properties, deriving from the large differences in raw materials and synthesis methods. The diverse concepts and species puzzle researchers and hinder the further study. Thus, there is an urgent need to unify the definition and clarify the confused relation of CDs. Herein, we classify the raw materials of CDs synthesis into small molecules and polymers, and discuss CDs from the aspects of raw materials. We believe that the polymer-like structures reserved in CDs are universal no matter from the condensation of small molecules or the direct inheritance of polymers. Moreover, many similarities are concluded between CDs and polymers through serious comparisons and enough evidences. The formation processes of CDs are mostly polymerization and the obtained CDs always possess polymeric characteristics, such as abundant reactive functional groups, polydispersity of products, highly crosslinked network structure and other similar properties to non-conjugated fluorescent polymers. Therefore, the new concept, polymer carbon dots (PCDs), is put forward to generalize all kinds of CDs based on the summary of related reports. Besides, the complicated influence factors of photoluminescence (PL) are discussed and mainly classified as molecule state, carbon core state, surface state and crosslink enhanced emission (CEE) effect. In general, this review puts forward PCDs as a unified definition of reported CDs, and summarizes the polymeric characteristics of PCDs from formation process and product properties, as well as simultaneously illustrates the PL mechanism.  相似文献   

11.
《中国化学快报》2023,34(10):108239
Carbon dots (CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple (380 nm) to red (613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition, by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm, respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes; and realized the mitochondrial-targeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo.  相似文献   

12.
Carbon quantum dots (CDs) are attractive nanoparticles for several applications, due to inherent properties such as excitation dependent photoluminescence emission and chemical stability. In the present work, we synthesized CDs from silk (Bombyx Mori) by a microwave‐assisted method. The resultant spherical nanoparticles with high fluorescence under UV light were incorporated into PCL/silk matrix and electrospun into continuous nanofiber yarns (NF‐Ys) by a one‐step method. Besides granting yarns fluorescence, CD inclusion contributed to a decrease in fiber diameter and an increase in strength by 2.7‐fold. Cell viability studies with mammalian lung cell lines show viability above 80%, suggesting good biocompatibilty. Such yarns show the potential to be assembled into larger structures such as biotextiles, with possible multifunctionalities such as antiviral, antibacterial, and biosensing applications.  相似文献   

13.
Afacile method was developed to prepare carbon dots(CDs) by pyrolysis and etching of coffee residue. The as-prepared CDs show uniform spherical nanoparticles with an average size of 2.3 nm and exhibit excitation-dependent fluorescence emissions. Moreover, CDs also exhibit strong fluorescence quenching to nitro compounds and metal ions in both water and ethanol solutions, which could act as a platform for dual detection of PA(picric acid) and Fe3+ ions with low detection limits of 0.26 and 0.83 μmol/L, respectively. This work provides a novel method for preparation of environmental-friendly fluorescent CDs and shows their potential applications in photoluminescence sensors.  相似文献   

14.
纳米碳点是碳纳米材料家族的新成员,近年来在国内外受到广泛关注。与传统的荧光染料和半导体量子点发光材料相比,碳点不仅具有优异的光学性能及尺寸效应,且具有制备成本低廉、生物相容性好、易于官能化、能带结构可调等优势。本文在理清有关碳点概念的基础之上,介绍了碳点结构特征和制备策略,着重综述了纳米碳点在生物成像与诊疗、传感器件、催化、光电器件和能量存储领域的最新研究进展,探讨了碳点研究目前存在的问题及未来的发展方向。  相似文献   

15.
The photoluminescence from water-soluble gold nanoparticles, each composed of a 5.1 nm gold core and a bovine serum albumin (BSA)-protected layer, has been observed. The maximal excitation and the maximal emission wavelength are at 320 and 404 nm, respectively. The photoluminescence quantum yield is estimated as 0.053+/-0.0070, at room temperature. The mechanism of the luminescence is hypothesized to be associated with interband transitions between the filled 5d(10) band and 6(sp)(1) conduction band. The photoluminescence is sensitive to pH, organic solvents and metal ions. These observations suggest that this nanoparticles are a viable alternative to organic fluorophores or semiconductor nanoparticles for biological labeling and imaging.  相似文献   

16.
碳量子点作为一种新兴的荧光纳米材料,具有粒径分布均匀、光稳定性好、激发-发射波长可调控、表面可修饰等优良的性质,兼具低毒性、生物相容性好等优点,在分析检测和生物成像等领域展现出广阔的应用前景。而蚕砂是家蚕的干燥粪便,简单易得。利用蚕砂作为碳量子点制备原料,采用微波合成的方法制备得到了一种平均水合粒径为4.86 nm,含氮、硫修饰的碳量子点材料,可作为针对激发波长、pH、金属离子浓度、温度及溶剂极性的变化有着显著响应特性的碳量子点型荧光探针。该探针的荧光最大发射波长随激发波长或pH的增加而红移;荧光强度随温度或pH的降低而增加;随着金属离子,特别是铜离子的加入而逐渐降低,并随着EDTA络离子的加入而逐渐回复。在多种溶剂中该探针均具有较好的溶解度,当换用不同极性的溶剂时,随着溶剂极性的增加荧光发射波长逐渐红移。荧光性质随多重环境参数变化为该碳量子点在未来的生物检测和成像领域提供了广阔的应用前景。  相似文献   

17.
In present work, fluorescent carbon dots (CDs) with an average diameter of 2.5 nm were firstly synthesised by a simple, convenient and low-cost hydrothermal method from chocolate. The obtained CDs possessed fine monodispersity and bright blue fluorescence that was strongest at an excitation wavelength of 360 nm and had a comparable quantum yield of 12% (in case of dots prepared in presence of nitric acid). The emission peak depended on the excitation wavelength in the range from 320 to 440 nm. Ionic strength had a weak effect up to 1.0 M and then no significant change was found in the range of 1.0–4.5 M. The fluorescence intensity of CDs displayed good pH adaptability and a linear dependence on the pH change in the range of pH 1.0–3.0 and pH 9.0–12.5, which have promising potentials for pH sensor.  相似文献   

18.
We have synthesized the environment-sensitive fluorophores 2-cyano-6-dihexylaminoanthracene and 2-propionyl-6-dihexylaminoanthracene (Anthradan) starting from 2,6-diaminoanthraquinone. Anthradan is the benzologue of the well-known family of naphthalene 2-propionyl-6-dimethylaminonaphthalene (PRODAN) fluorophores. The additional spectral red shift of the anthracene avoids the autofluorescence of many biological systems and provides for more favorable excitation wavelengths for fluorescence applications. Furthermore, Anthradan exhibits polarity-sensitive emission comparable to that of PRODAN and displays high quantum yields in a range of solvents. Single molecules of these anthracene-containing fluorophores have been imaged in polymer hosts as a proof-of-principle.  相似文献   

19.
Although reports have shown shifts in carbon dot emission wavelengths resulting from varying the excitation wavelength, this excitation‐dependent emission does not constitute true tuning, as the shifted peaks have much weaker intensity than their dominant emission, and this is often undesired in real world applications. We report for the first time the synthesis and photoluminescence properties of carbon dots whose peak fluorescence emission wavelengths are tunable across the entire visible spectrum by simple adjustment of the reagents and synthesis conditions, and these carbon dots are excited by white light. Detailed material characterization has revealed that this tunable emission results from changes in the carbon dots’ chemical composition, dictated by dehydrogenation reactions occurring during carbonization. These significantly alter the nucleation and growth process, resulting in dots with either more oxygen‐containing or nitrogen‐containing groups that ultimately determine their photoluminescence properties, which is in stark contrast to previous observations of carbon dot excitation‐dependent fluorescence. This new ability to synthesize broadband excitable carbon dots with tunable peak emissions opens up many new possibilities, particularly in multimodal sensing, in which multiple analytes and processes could be monitored simultaneously by associating a particular carbon dot emission wavelength to a specific chemical process without the need for tuning the excitation source.  相似文献   

20.
Carbon dots (CDs) are new materials with applications in bioimaging, optical devices, catalysis, and many other fields. Their advantages, such as ease of large-scale preparation, low-costing precursors, highly tunable photoluminescence, satisfactory biocompatibility, and photostability against photobleaching, make them competitive alternatives to conventional semiconductor-based quantum dots and organic dyes. To overwhelm other luminescent materials in applications, their functionalities still need to be improved in spite of the abovementioned advantages. In recent years, it has been proven that heteroatom doping is an effective approach to improve the optical and electronic performance of CDs by tuning their carbon skeleton matrices and chemical structures. In this review, the development of non-metal-heteroatom-doped CDs, including heteroatom categories, preparation methods, and physicochemical properties, are discussed. Progressive trends in heteroatom-doped CDs are also discussed at the end of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号