首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymethacrylate with semiconducting side chains ( P1 ), synthesized by free radical polymerization, was used as a donor material for polymer solar cells. P1 is of high molecular weight (M n = 82 kg mol−1), good thermal stability, narrow band gap (1.87 eV), and low‐lying HOMO energy level (−5.24 eV). P1 possesses not only the good film‐forming ability of polymers but also the high purity of small organic molecules. Power conversion efficiencies (PCEs) of 0.63% and 1.22% have been obtained for solar cells with M1 :PC71BM and P1 :PC71BM as the active layers, respectively. With PC61BM as the acceptor, PCEs of M1 and P1 based devices decrease to 0.61% and 0.76%, respectively. To the best of our knowledge, this is the first report that free radical polymerization can be used to prepare polymer donors for photovoltaic applications.  相似文献   

2.
Active layers in many thin‐film organic photovoltaic devices (OPVs) contain light‐absorbing polymers that serve as electron donors, mixed with appropriate electron acceptors. In principle, the polymers can be replaced by small molecules with suitable bandgaps, which offer multiple advantages, including well‐defined structures and methods of synthesis and purification that provide uniform samples. However, such materials often undergo separation of phases and crystallization, so making long‐lived films that remain smooth, homogeneous, flexible, and transparent is not easy. We have found that effective OPVs can be made by dispersing mixtures of low‐bandgap push–pull small molecules as electron donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as electron acceptor in matrices of optoelectronically passive conventional polymers, including polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(ethylene glycol), and poly(dimethylsiloxane). By varying the identity of the matrix, its molecular weight, the loading of active components, and the conditions of annealing, we have produced efficient OPVs from components that would otherwise have undergone phase separation and crystallization, leading to poor performance. Layers with up to 35% matrix were found to be effective and could be fabricated at room temperature by simple processes. To probe the role of the polymers as dispersants, morphologies of composite films were examined by atomic force microscopy and electron microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1479–1492  相似文献   

3.
The unique properties of boron dipyrromethene (BODIPY) dyes including facile synthesis, high absorption coefficients, and delocalized molecular orbitals as well as excellent photochemical and thermal stability, make them promising as materials for organic solar cells. Accordingly, in this study three A‐D ‐A structural small molecules of BDTT‐BODIPY, FL‐BODIPY, and TT‐BODIPY have been synthesized, in which two BODIPY acceptor units are symmetrically conjugated to 4,8‐bis(5‐(2‐ethylhexyl) thiophen‐2‐yl)benzo[1,2‐b:4,5‐b]dithiophene (BDTT), 9,9‐dioctyl‐9H‐fluorene (FL), and thieno[3,2‐b]thiophene (TT) donor cores, respectively. The manipulation of the structural parameters significantly improves the performances of the BHJ OSCs, which show power conversion efficiencies of 4.75 %, 1.51 %, and 1.67 % based on [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the acceptor material and BDTT‐BODIPY, FL‐BODIPY, and TT‐BODIPY as the donor materials, respectively.  相似文献   

4.
Silole‐containing conjugated polymers ( P1 and P2 ) carrying methyl and octyl substituents, respectively, on the silicon atom were synthesized by Suzuki polycondensation. They show strong absorption in the region of 300–700 nm with a band gap of about 1.9 eV. The two silole‐containing conjugated polymers were used to fabricate polymer solar cells by blending with PC61BM and PC71BM as the active layer. The best performance of photovoltaic devices based on P1 /PC71BM active layer exhibited power conversion efficiency (PCE) of 2.72%, whereas that of the photovoltaic cells fabricated with P2 /PC71BM exhibited PCE of 5.08%. 1,8‐Diiodooctane was used as an additive to adjust the morphology of the active layer during the device optimization. PCE of devices based on P2 /PC71BM was further improved to 6.05% when a TiOx layer was used as a hole‐blocking layer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
We reported on two polymer semiconducting copolymers based on porphyrin compounds, poly[9,9-dioctylfluorene-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PFPor) and poly[9-(heptadecan-9-yl)carbazole-co-5,15-bis(hexoxybenzyl)-10,20-bis(benzo-4-yl)porphyrin] (PCPor), for use as organic photovoltaic materials. The thermal, optical, electrochemical, and photovoltaic properties of the two polymers were investigated. In addition, PC61BM and PC71BM were introduced as acceptor materials to confirm the acceptor effect in bulk heterojunction photovoltaic devices. Moreover, in order to establish acceptor effects, morphologies of polymer/PCBM blend films were analyzed through atomic force microscopy (AFM). PFPor and PCPor exhibited the best device performance with power conversion efficiencies (PCE) of 0.62% and 0.76%, respectively, upon the introduction of PC71BM as the acceptor in the device where 86 wt.% of the PC71BM was contained in the active layer (pol:PC71BM = 1:6, w/w).  相似文献   

6.
A series of low‐band‐gap (LBG) donor–accepor conjugated main‐chain copolymers ( P1 – P4 ) containing planar 2,7‐carbazole as electron donors and bithiazole units (4,4′‐dihexyl‐2,2′‐bithiazole and 4,4′‐dihexyl‐5,5′‐di(thiophen‐2‐yl)‐2,2′‐bithiazole) as electron acceptors were synthesized and studied for the applications in bulk heterojunction (BHJ) solar cells. The effects of electron deficient bithiazole units on the thermal, optical, electrochemical, and photovoltaic (PV) properties of these LBG copolymers were investigated. Absorption spectra revealed that polymers P1 – P4 exhibited broad absorption bands in UV and visible regions from 300 to 600 nm with optical band gaps in the range of 1.93–1.99 eV, which overlapped with the major region of the solar emission spectrum. Moreover, carbazole‐based polymers P1 – P4 showed low values of the highest occupied molecular orbital (HOMO) levels, which provided good air stability and high open circuit voltages (Voc) in the PV applications. The BHJ PV devices were fabricated using polymers P1 – P4 as electron donors and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or (6,6)‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as electron acceptors in different weight ratios. The PV device bearing an active layer of polymer blend P4:PC71BM (1:1.5 w/w) showed the best power conversion efficiency value of 1.01% with a short circuit current density (Jsc) of 4.83 mA/cm2, a fill factor (FF) of 35%, and Voc = 0.60 V under 100 mW/cm2 of AM 1.5 white‐light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
The effects of the molecular structure of thiazole-based polymers on the active layer morphologies and performances of electronic and photovoltaic devices were studied. Thus, thiazole-based conjugated polymers with a novel thiazole-vinylene-thiazole (TzVTz) structure were designed and synthesized. The TzVTz structure was introduced to extend the π conjugation and coplanarity of the polymer chains. By combining alkylthienyl-substituted benzo[1,2-b:4,5-b′]dithiophene (BDT) or dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (DTBDT) electron-donating units and a TzVTz electron-accepting unit, enhanced intermolecular interactions and charge transport were obtained in the novel polymers BDT-TzVTz and DTBDT-TzVTz. With a view to using the polymers in transistor and photovoltaic applications, the molecular self-assembly in and their nanoscale morphologies of the active layers were controlled by thermal annealing to enhance the molecular packing and by introducing a diphenyl ether solvent additive to improve the miscibility between polymer donors and [6,6]phenyl-C71-butyric acid methyl ester (PC71BM) acceptors, respectively. The morphological characterization of the photoactive layers showed that a higher degree of π-electron delocalization and more favorable molecular packing in DTBDT-TzVTz compared with in BDT-TzVTz leads to distinctly higher performances in transistor and photovoltaic devices. The superior performance of a photovoltaic device incorporating DTBDT-TzVTz was achieved through the superior miscibility of DTBDT-TzVTz with PC71BM and the improved crystallinity of DTBDT-TzVTz in the nanofibrillar structure.  相似文献   

8.
Narrow band gap conjugated polymer zwitterions (CPZs) were synthesized by Suzuki polymerization and characterized to understand their electronic properties and utility as cathode modification layers in solar cells. The polymers were prepared from diketopyrrolopyrrole (DPP) and iso-indigo monomers containing sulfobetaine (SB) pendant groups, benefiting from an ion-rich aqueous phase in the polymerizations. UV–vis absorption spectroscopy revealed the optical energy gap value for the CPZs, ranging from 1.7 to 1.2 eV. Ultraviolet photoelectron spectroscopy of the CPZs as thin layers on Ag metal showed that the pendent zwitterions impart an interfacial dipole (Δ) to the metal and a work function reduction of ∼0.9 eV. OPVs fabricated using a conventional bulk heterojunction (BHJ) device architecture of ITO/PEDOT:PSS/(PTB7:PC71BM)/CPZ/Ag led to dramatic improvements in power conversion efficiency (PCE) values relative to devices having bare Ag cathodes (PCE < 2% for bare Ag vs. 6.7–7.7% for CPZ/Ag). The benzothiadiazole (BT)/DPP polymer denoted as PT2BTDPPSB gave an optimal PCE of 7.7% in a conventional BHJ OPV device architecture fabricated on a Ag cathode. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 327–336  相似文献   

9.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

10.
Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid-state thin films due to strong π–π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'-bis(1-ethylpropyl)perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) was mixed with a binary blend of PTB7 and PC71BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), PC71BM=[6,6]-phenyl-C71-butyric acid methyl ester). We varied the PC71BM/EP-PDI weight ratio to investigate the influence of EP-PDI on the optical, electrical, and morphological properties of the PTB7:PC71BM:EP-PDI ternary blend. Compared with the reference PTB7:PC71BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP-PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71BM:EP-PDI-based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short-circuit current density (JSC) of 56.7 μA cm−2 under 500 lx (ca. 0.17 mW cm−2) indoor LED light conditions.  相似文献   

11.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

12.
A new balanced donor–acceptor molecule, namely, benzodithiophene (BDT)‐rhodanine‐[6,6]‐phenyl‐C71 butyric acid methyl ester (Rh‐PC71BM) comprising two covalently linked blocks, a p‐type oligothiophene‐containing BDT‐based moiety and an n‐type PC71BM unit was designed and synthesized. The single‐component organic solar cell (SCOSC) fabricated from Rh‐PC71BM molecules showed a power conversion efficiency (PCE) of 3.22 % with an open‐circuit voltage (Voc) of 0.98 V. These results rank are among the highest values for SCOSCs based on a monomolecular material. In particular, the one‐molecule Rh‐PC71BM device exhibits excellent thermal stability compared to reference Rh‐OH:PC71BM device. The success of our monomolecular strategy can provide a new way to develop high‐performance SCOSCs.  相似文献   

13.
New conjugated copolymers, P1‐P3 , based on dithiafulvalene‐fused entity and different conjugated segments have been synthesized. Incorporation of electron‐deficient conjugated segments into the conjugated copolymers results in red shifting the absorption band and lowering the hole mobility. Bulk heterojunction solar cells using on these polymers as the donor and [6,6]‐phenyl‐C61 ‐butyric acid methyl ester (PC61BM) as the acceptor were fabricated by solution process. The cells based on the blend of P1‐P3 /PC61BM (1:1, w/w) have power conversion efficiencies (PCEs) ranging from 0.53 to 0.93%. Among these, the cell of P1 /PC61BM exhibited the highest open‐circuit voltage at 0.85 V, and the cell of P3/PC61BM exhibited the best PCE at 0.93% with the short‐circuit current (JSC) of 4.88 mA/cm2. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two copolymers of fluorene and thiophene with conjugated side‐chain pending acceptor end group of cyanoacetate ( P2 ) and malononitrile ( P3 ) were synthesized. Both polymers exhibit good thermal stability and low highest occupied molecular orbital level (?5.5 eV). In comparison with P2 , P3 exhibits stronger UV–vis absorption and higher hole mobility. Polymer solar cells based on P3 :PC71BM exhibits a power conversion efficiency of 1.33% under AM 1.5, 100 mW/cm2, which is three times of that based on P2 :PC71BM. The higher efficiency is attributed to better absorption, higher hole mobility, and the reduced phase separation scale in P3 :PC71BM blend. The aggregate domain size in P3 :PC71BM blend is 50 nm, much smaller than that in P2 :PC71BM blend (200 nm). Tiny difference in the end groups on side chains of P2 and P3 leads to great difference in phase separation scale, charge transport, and efficiency of their photovoltaic devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of small molecules that contained identical π‐spacers (ethyne), a central diketopyrrolopyrrole (DPP) unit, and different aromatic electron‐donating end‐groups were synthesized and used in organic solar cells (OSCs) to study the effect of electron‐donating groups on the device performance. The three compounds, DPP‐A‐Ph , DPP‐A‐Na , and DPP‐A‐An , possessed intense absorption bands that covered a wide range, from 350 to 750 nm, and relatively low HOMO energy levels, from ?5.50 to ?5.55 eV. DPP‐A‐An , which contained anthracene end‐groups, demonstrated a stronger absorbance and a higher hole mobility than DPP‐A‐Ph , which contained phenyl groups, and DPP‐A‐Na , which contained naphthalene units. The power‐conversion efficiencies (PCEs) of OSCs based on organic:PC71BM blends (1:1, w/w) with a processed DIO additive were 3.93 % for DPP‐A‐An , 3.02 % for DPP‐Na , and 2.26 % for DPP‐A‐Ph . These findings suggest that a DPP core that is functionalized with electron‐donating capping groups constitutes a promising new class of solution‐processable small molecules for OSC applications.  相似文献   

16.
We use frequency dependent capacitance measurements to probe carrier mobilities and transport parameters of six representative semiconducting polymers and some of their bulk heterojunction (BHJ) blends. With a suitable choice of a hole injection layer, well-defined signals for hole transport characterization can be obtained for the pristine polymers [J. Appl. Phys. 99, 013706 (2006)]. However, ill-defined signals with negative capacitances, arising from undesirable electron leakages, are obtained for the BHJ blends. The problem of electron leakage can be circumvented by inserting an electron blocking and trapping layer under the cathode. As a result, hole transport properties of BHJ blends can be obtained. For the BHJ of poly(3-hexylthiophene) blended with [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM), the hole mobilities seem to be insensitive to the composition of the BHJ, indicating the P3HT component in the BHJ is well connected. On the other hand, for poly[N-9“-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadia zole)] doped with [6,6]-phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM), a clear reduction of the hole mobility is observed as the polymer composition is reduced. Temperature dependent experiments were performed. The data are analyzed by the Gaussian Disorder Model. We found that the energetic disorder is independent of the composition of the BHJ. Organic photovoltaic performances of BHJ blends are also measured in this contribution. The correlation between device performance and energetic disorder of the BHJ will be discussed. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

17.
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918  相似文献   

18.
Poly(isoindigo‐alt‐3,4‐difluorothiophene) (PIID[2F]T) analogues used as “polymer acceptors” in bulk‐heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2‐b:4,5‐b′]dithiophene and 5,6‐difluorobenzotriazole). Considering that most efficient polymer‐acceptor alternatives to fullerenes (e.g. PC61BM or its C71 derivative) are based on perylenediimide or naphthalenediimide motifs thus far, branched alkyl‐substituted PIID[2F]T polymers are particularly promising non‐fullerene candidates for “all‐polymer” BHJ solar cells.  相似文献   

19.
Low bandgap polymers with dithienylquinoxaline moieties based on 6H‐phenanthro[1,10,9,8‐cdefg]carbazole were synthesized via the Suzuki coupling reaction. Alkoxy groups were substituted at two different positions on the phenyl groups of the quinoxaline units of these polymers: in the para‐position (PPQP) and in the meta‐position (PPQM). The two polymers showed similar physical properties: broad absorption in the range of 400–700 nm, optical bandgaps of ~1.8 eV, and the appropriate frontier orbital energy levels for efficient charge transfer/separation at polymer/PC71BM interfaces. However, the PPQM solar cell achieved a higher PCE due to its higher Jsc. Our investigation of the morphologies of the polymer:PC71BM blend films and theoretical calculations of the molecular conformations of the polymer chains showed that the polymer with the meta‐positioned alkoxy group has better miscibility with PC71BM than the polymer with the para‐positioned alkoxy group because the dihedral angle of its phenyl group with respect to the quinoxaline unit is higher. This higher miscibility resulted in a polymer:PC71BM blend film with a better morphology and thus in a higher PCE. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 796–803  相似文献   

20.
Fullerene-based organic solar cells are generally suffering from severe microstructure evolution occurring in their bulk heterojunction active layers and thus are extremely stable. To address it, four polymerizable C70 fullerene derivatives, [6,6]-phenyl-C71-ethyl acrylate (PC71EA), [6,6]-phenyl-C71-propyl acrylate (PC71PrA), [6,6]-phenyl-C71-butyl acrylate (PC71BA), and [6,6]-phenyl-C71-pentyl acrylate (PC71PeA), have been designed, synthesized, and investigated. These fullerene compounds have a molecular structure, shape and size very like the conventional C70 fullerene acceptor, [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), and have been found no different in their light absorption, redox potentials, and frontier orbital energy levels. Using these fullerene acrylates individually as acceptor and poly(3-hexylthiophene) as donor, organic solar cells have been fabricated and gave optimal efficiencies ranging from 3.32% to 4.16%, comparable to PC71BM-based reference cells (4.06%). Owing to their acrylate functionality, these fullerene derivatives can turn into insoluble upon heating, and thus endow their solar cell devices much better thermostability than PC71BM-based reference cells. The best one, coming from PC71PeA devices, reported an optimal efficiency of 4.16%, and maintained 91.7% efficiency after heat treatment at 150 °C for 35 h. As a sharp contrast, the PC71BM reference cell dropped its optimal efficiency from 4.06% to 0.48% only after 5 h heat treatment. X-ray diffraction, optical and atomic force microscopy, and space-charge-limited current method have been carried out to understand active layer structure, morphology, and charge mobility change during heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号