首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐doped TiO2 nanotube array (DTNA) electrodes were fabricated through anodic oxidation combined with cathodic reduction. The morphology and structural features of pristine TiO2 nanotube arrays and DTNA electrodes were studied through scanning electron microscopy, X‐ray diffractometry, and X‐ray photoelectron spectroscopy. An accelerated life test was used to test the electrode service lifetime and thus the electrode's stability. The service lifetime of the DTNA electrode prepared at constant 40 V for 6 hr was approximately 338.7 hr at constant 1 mA/cm2 in a 1 M NaClO4 solution. Methyl orange (MO) was employed as the degradation probe for measuring electrochemical oxidation performance. The color removal rate of 200 mg/L MO of the DTNA electrode (85.2% at 1 mA/cm2) was greater than that of the Ti/IrO2 electrode (31.1% at 1 mA/cm2). The larger the surface area of the DTNA electrode is, the more conductive the electrode is for the degradation of organic substances. Organic degradation on the DTNA electrode occurred primarily through an indirect pathway (producing [?OH]).  相似文献   

2.
Electrochemical processes in mesoporous TiO2‐Nafion thin films deposited on indium tin oxide (ITO) electrodes are inherently complex and affected by capacitance, Ohmic iR‐drop, RC‐time constant phenomena, and by potential and pH‐dependent conductivity. In this study, large‐amplitude sinusoidally modulated voltammetry (LASMV) is employed to provide access to almost purely Faradaic‐based current data from second harmonic components, as well as capacitance and potential domain information from the fundamental harmonic for mesoporous TiO2‐Nafion film electrodes. The LASMV response has been investigated with and without an immobilized one‐electron redox system, ferrocenylmethyltrimethylammonium+. Results clearly demonstrate that the electron transfer associated with the immobilized ferrocene derivative follows two independent pathways i) electron hopping within the Nafion network and ii) conduction through the TiO2 backbone. The pH effect on the voltammetric response for the TiO2 reduction pathway (ii) can be clearly identified in the 2nd harmonic LASMV response with the diffusion controlled ferrocene response (i) acting as a pH independent reference. Application of second harmonic data derived from LASMV measurement, because of the minimal contribution from capacitance currents, may lead to reference‐free pH sensing with systems like that found for ferrocene derivatives.  相似文献   

3.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

4.
In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S‐CBD). The as‐prepared CdS/TiO2NTs was characterized by field‐emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiO2NTs. The amperometric It curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs.  相似文献   

5.
The degradation of ofloxacin (OFX) at low concentration in aqueous solution by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells (UVA-LED/TiO2 NTs PFCs) was investigated. TiO2 nanotube arrays (TiO2 NTs) photoanode prepared by anodization-constituted anatase–rutile bicrystalline framework. The results indicated that the degradation efficiency of OFX by UVA-LED/TiO2 NTs PFC was significantly enhanced by 14.3% compared with UVA-LED/TiO2 NTs photocatalysis. The pH affected the degradation efficiency markedly; the highest degradation efficiency (95.0%) and the pseudo-first-order reaction rate constant k value (0.049 min?1) were achieved in neutral condition (pH 7.0). The degradation efficiency increased with the increasing concentration of dissolved oxygen (DO) in the UVA-LED/TiO2 NTs PFC. The main reactive species of OFX degradation are positive holes (h+) and superoxide ion radicals (O 2 ·? ) in a DO sufficient condition. Furthermore, the possible pathways of OFX degradation were proposed.  相似文献   

6.
Owing to well‐defined structural parameters and enhanced electronic properties, highly ordered TiO2 nanotube arrays have been employed to substitute TiO2 nanoparticles for use in dye‐sensitized solar cells. To further improve the performance of dye‐sensitized TiO2 nanotube solar cells, efforts have been directed toward the optimization of TiO2 photoanodes, dyes, electrolytes, and counter electrodes. Herein, we highlight recent progress in rational structural and surface engineering on anodic TiO2 nanotube arrays and their effects on improving the power conversion efficiency of dye‐sensitized TiO2 nanotube solar cells.  相似文献   

7.
TiO2–carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layer could affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2–CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2–CNT heterojunctions and TiO2 nanotubes were 0.75 h−1 (R2 = 0.983) and 0.39 h−1 (R2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2–CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2–CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial.  相似文献   

8.
A novel Pt–TiO2/Ag nanotube photocatalyst has been synthesized successfully via a facile method. TiO2 nanotubes are assembled with numerous ultrathin TiO2 nanosheets and show a highly open structure. The gaps between adjacent TiO2 nanosheets can serve as channels for the access of reactants, accelerating the mass transfer process. During the fabrication process of the Pt–TiO2/Ag nanotube photocatalyst, high‐quality Pt–SiO2 nanotubes are synthesized first with the structure‐directing effect of polyvinylpyrrolidone. Then a TiO2 layer is coated on the outside surface of the silica nanotubes. The introduced titanium species can be converted into TiO2 nanosheet structure during the subsequent hydrothermal treatment, gradually constructing nanosheet‐assembled nanotubes. Lastly, after the introduction of another electron sink function site of Ag through UV irradiation, the Pt–TiO2/Ag nanotube photocatalyst with dual electron sink functional sites is obtained. The specially doped Pt and Ag NPs can simultaneously inhibit the recombination process of photogenerated charge carriers and increase light utilization efficiency. Therefore, the as‐synthesized Pt–TiO2/Ag nanotube catalyst exhibits a high photocatalytic degradation performance for rhodamine B of 0.2 min?1, which is about 3.2 and 5.3 times as high as that of Pt–TiO2 and TiO2 nanotubes because of the enhanced charge carrier separation efficiency. Furthermore, in the unique nanoarchitecture, the nanotubes are assembled with numerous ultrathin TiO2 nanosheets, which can absorb abundant active species and dye molecules for photocatalytic reaction. On the basis of experimental results, a possible rhodamine B degradation mechanism is proposed to explain the excellent photocatalytic efficiency of the Pt–TiO2/Ag nanotube photocatalyst.  相似文献   

9.
A novel composite, biochar derived from spent coffee grounds with immobilized TiO2 (biochar–TiO2) was prepared, characterized, and applied as an alternative, effective, and sustainable photocatalyst for degrading diclofenac from aqueous solution. Composites with different mass ratios between TiO2 and biochar were prepared by mechanical mixing and subsequent pyrolysis in an inert atmosphere of N2 at 650°C. The sample with biochar–TiO2 ratio of 1:1 presented a degradation efficiency of 90% at just 120 min versus 40% for TiO2 used as reference. This fact is associated with a set of intrinsic characteristics obtained during the formation of the composite, such as superior pore size, avoiding the recombination of the ē/h+ pair, bandgap reduction, and promotion of reactive oxygen species due to phenolic groups present on the biochar surface. The dominant reactive species involved during the photocatalytic degradation of diclofenac were h+ and OH. The diclofenac degradation pathways were determined based on the identification of intermediates and nonpurgeable organic carbon (NPOC) analysis. The novel biochar–TiO2 composite prepared in this work showed high physical–chemical stability and efficiency over five consecutive cycles of reuse, proving to be a highly promising photocatalyst for degrading diclofenac in water.  相似文献   

10.
The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO2 nanotube arrays (TiO2 NTs) were fabricated by a two-step anodization method. The TiO2 NTs prepared in two-step anodization process (2-step TiO2 NTs) showed much better surface smoothness and tube orderliness than TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO2 NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting.  相似文献   

11.
采用阳极氧化法制备得到锐钛矿型二氧化钛(TiO2)纳米管阵列,在其表面通过电镀法沉积Pt,得到了低铂的Pt/TiO2纳米管电极(Pt/TiO2-NTs)。通过扫描电子显微镜和透射电子显微镜对其进行形貌表征后发现,Pt较为均匀地分布于TiO2纳米管阵列中。进一步的电催化析氢结果表明,Pb/TiO2-NTs在10 m A·cm-2时,过电位为0.079 V,塔菲尔斜率为42.7 m V·dec-1,较Pt/TiO2致密膜电极(Pt/TiO2-F)以及商业Pt/C催化剂显示了更为优异的催化活性。同时,在长循环稳定性测试(3 000个周期)中,Pb/TiO2-NTs相较于上述2种对比电极显示了更为优异的稳定性。  相似文献   

12.
The preparation of nanoporous TiO2 electrodes modified with an MgTiO3 layer and its application in dye-sensitized solar cells (DSSCs) were reported. The conduction band of MgTiO3 stands higher than that of TiO2, so the MgTiO3 layer can be beneficial to the improvement of nanoporous TiO2 electrodes. The as-prepared TiO2/MgTiO3 electrodes were characterized by XRD and the diffraction of its crystal plane (1 0 4) was detected, demonstrating the existence of MgTiO3 phase on the surface of TiO2. Compared with bare TiO2 electrodes, MgTiO3 modified TiO2 electrodes presented more dye adsorption. Moreover an energy barrier formed as TiO2 electrodes were modified with MgTiO3 layer, which suppresses the charge recombination. As a result, the photoelectrochemical properties of the modified electrodes were improved and the overall energy conversion efficiency η was increased from 6.12% to 8.75% under the illumination of a white light of 100 mW/cm2.  相似文献   

13.
Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能   总被引:2,自引:0,他引:2  
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒。利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能。结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍。而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%。  相似文献   

14.
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒.利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能.结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍.而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%.  相似文献   

15.
Polarization curves and complex kinetics of oxygen reduction (ORR) and borohydride oxidation (BOR) reaction were evaluated at thin Au layer on Ti and TiO2 electrodes. TiO2 electrodes prepared included amorphous TiO2 (AM?TiO2) and anatase (A?TiO2). The electrodes structure and nanotube arrays morphology were observed by XRD and SEM, respectively. All electrodes show activity for both ORR and BOR. The use of Au layer over A?TiO2 produces the strongest synergistic effect for ORR with exchange of 3 electrons. On the other hand, the strongest effect for BOR was observed in case of Au/Ti.  相似文献   

16.
Ag-SrTiO3 nanotube arrays were successfully prepared for the degradation of methyl orange (MO) under ultraviolet irradiation. In order to form highly ordered SrTiO3 nanotube arrays, the preparation of TiO2 nanotube arrays by anodic oxidation of titanium foil in different electrolytes was investigated. The selected organic solvents in electrolytes include glycerol, dimethyl sulfoxide and glycol. The results indicate that the morphology of TiO2 nanotube arrays prepared in glycol containing ammonium fluoride electrolyte is more regular. Then SrTiO3 nanotube arrays were synthesized by a hydrothermal method using TiO2 nanotube arrays as the precursor. In order to further improve the photocatalytic activity of SrTiO3 nanotube arrays, Ag nanoparticles were loaded on SrTiO3 nanotube arrays by two sets of experiments. The loaded Ag results in an enhancement of photocatalytic activity of SrTiO3 nanotube arrays. Moreover, the effect of pH on the photocatalytic degradation of MO was also studied.  相似文献   

17.
Anodized TiO2 nanotube fibers using in-headspace solid-phase microextraction (SPME) with gas chromatography–mass spectrometry (GC–MS) have been exploited as an analytical method for volatile organic compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX) detection. The factors of anodizing time and annealing temperature for TiO2 nanotube production are studied and the adsorption factors (time, ionic strength, and temperature) and desorption factors (time and temperature) for BTEX analysis are optimized. The limit of detections (LODs) for benzene, toluene, ethylbenzene o-xylene, and m, p-xylene are 0.5, 0.1, 1.0, 1.0, and 2.0 μg L−1, respectively. The linear ranges for BTEX (0.5–15,000 μg L−1) and satisfactory linearity (R2 ≥ 0.9954) are obtained. This method is successfully applied in real samples with the recoveries ranging from 92% to 97%. TiO2 nanotube fiber is a promising technique for BTEX analysis.  相似文献   

18.
Intercalation of lithium from an LiClO4 propylene carbonate solution into thin-film TiO2 (rutile) electrodes produced by thermal oxidation of a titanium substrate are studied using cyclic voltammetry and impedance measurements at 0.01 to 105 Hz. An equivalent circuit adequately modeling the impedance spectra of TiO2- and Li x TiO2 electrodes throughout the frequency range studied is proposed. The electrochemical characteristics of film electrodes, the reversibility of intercalation-deintercalation process, the effect of surface passivation on the lithium transfer rate, and the dependence of electric, kinetic, and diffusion parameters on the electrode potential (composition) are discussed. The diffusion coefficient of lithium in Li x TiO2 is 10–12 cm2/s, as estimated by the impedance method.  相似文献   

19.
Ordered TiO2 nanotube arrays have been widely used in many fields such as photocatalysis, self-cleaning, solar cells, gas sensing, and catalysis. This present study exploited a new functional application of the ordered TiO2 nanotube arrays. A micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays was developed for the enrichment and measurement of organochlorine pesticides prior to gas chromatography-electron capture detection. Ordered TiO2 nanotube arrays exhibited excellent merits on the pre-concentration of organochlorine pesticides and lower detection limits of 0.10, 0.10, 0.10, 0.098, 0.0076, 0.0097, 0.016, and 0.023 μg L−1 for α-HCH, β-HCH, γ-HCH, δ-HCH, p,p’-DDE, p,p’-DDD, o,p’-DDT, and p,p’-DDT, respectively, were achieved. Four real water samples were used for validation, and the spiked recoveries were in the range of 78–102.8%. These results demonstrated that the developed micro-solid phase equilibrium extraction using ordered TiO2 nanotube arrays would be very constructive and have a great beginning with a brand new prospect in the analysis of environmental pollutants.  相似文献   

20.
庄惠芳  赖跃坤  李静  孙岚  林昌健 《化学学报》2007,65(21):2363-2369
采用电化学阳极氧化法在钛表面构筑了一种结构有序、微米级的TiO2纳米管阵列膜层. 考察了制备电压、氧化时间、溶液搅拌等实验参数对TiO2纳米管阵列形貌和尺寸的影响. 应用SEM和XRD对膜层的形貌和晶型进行了分析和表征, 并通过TiO2纳米管阵列膜对甲基橙的光催化降解, 研究了TiO2纳米管阵列膜层结构与光催化活性的关系. 结果表明: 阳极电压和溶液搅拌对制备TiO2纳米管阵列的结构起到关键的作用. 控制20 V电压制备的TiO2纳米管阵列膜, 管长达2.6~3.3 μm, 经500 ℃热处理后具有最高的光催化活性, 其光催化性能明显优于一般的TiO2纳米颗粒膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号