首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   

2.
Developing a cost-effective, efficient, and stable oxygen evolution reaction (OER) catalyst is of great importance for sustainable energy conversion and storage. In this study, we report a facile one-step fabrication of cationic surfactant-assisted Prussian blue analogues (PBAs) Mx[Fe(CN)5CH3C6H4NH2]∙yC19H34NBr abbreviated as SF[Fe-Tol-M] (where SF = N-tridecyl-3-methylpyridinium bromide and M = Mn, Co and Ni) as efficient heterogeneous OER electrocatalysts. The electrocatalysts have been characterized by Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). In the presence of cationic surfactant (SF), PBAs-based electrodes showed enhanced redox current, high surface area and robust stability compared to the recently reported PBAs. SF[Fe-Tol-Co] hybrid catalyst shows superior electrochemical OER activity with a much lower over-potential (610 mV) to attain the current density of 10 mA cm−2 with the Tafel slope value of 103 mV·dec−1 than that for SF[Fe-Tol-Ni] and SF[Fe-Tol-Mn]. Moreover, the electrochemical impedance spectroscopy (EIS) unveiled that SF[Fe-Tol-Co] exhibits smaller charge transfer resistance, which results in a faster kinetics towards OER. Furthermore, SF[Fe-Tol-Co] offered excellent stability for continues oxygen production over extended reaction time. This work provides a surface assisted facile electrode fabrication approach for developing binder-free OER electrocatalysts for efficient water oxidation.  相似文献   

3.
在全球能源结构“清洁化”转型的背景下,可再生能源的开发与利用能够有效解决能源危机与环境问题,符合我国的可持续发展路线。能源转换与储存技术贯穿着循环能源技术的各个环节,是新型能源框架的核心支撑。 水氧化反应是众多能源体系(例如, 水裂解反应、 二氧化碳还原反应、 氮还原反应和金属-空气电池)的重要半反应, 但其动力学缓慢, 严重限制了设备的能源效率, 阻碍了相应技术的广泛应用。因此, 亟需开发具有低成本、 高活性、 强稳定性的水氧化电催化剂以降低反应能垒,进而推动能源转换与存储设备的工业化发展。钙钛矿型材料的晶体结构包容性强, 元素组成涵盖广泛, 具有丰富而独特的电子特性, 易于实现表面化学与电子结构的精准调控, 因此被公认为理想的催化材料设计平台。本文综述了钙钛矿型水氧化电催化剂的最新研究进展。首先介绍了钙钛矿型材料的晶体结构和电子特性,归纳了制备钙钛矿型氧化物的代表性的合成策略。通过讨论近期钙钛矿型水氧化电催化剂在酸性和碱性介质中的研究进展, 强调了钙钛矿型电催化剂结构与催化性能间的构效关系。 最后, 我们总结了钙钛矿型水氧化电催化剂在实际应用中面临的挑战与机遇, 提出了相应的建议与解决方案, 期望能使读者更清晰地认识到该领域的未来发展方向。  相似文献   

4.
Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm−2 for HER and OER in alkaline medium, respectively.  相似文献   

5.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

6.
The depletion of fossil fuels has accelerated the search for clean, sustainable, scalable, and environmentally friendly alternative energy sources. Hydrogen is a potential energy carrier because of its advantageous properties, and the electrolysis of water is considered as an efficient method for its industrial production. However, the high-energy conversion efficiency of electrochemical water splitting requires cost-effective and highly active electrocatalysts. Therefore, researchers have aimed to develop high-performance electrode materials based on non-precious and abundant transition metals for conversion devices. Moreover, to further reduce the cost and complexity in real-world applications, bifunctional catalysts that can be simultaneously active on both the anodic (i.e., oxygen evolution reaction, OER) and cathodic (i.e., hydrogen evolution reaction, HER) sides are economically and technically desirable. This Minireview focuses on the recent progress in transition-metal-based materials as bifunctional electrocatalysts, including several promising strategies to promote electrocatalytic activities for overall water splitting in alkaline media, such as chemical doping, defect (vacancy) engineering, phase engineering, facet engineering, and structure engineering. Finally, the potential for further developments in rational electrode materials design is also discussed.  相似文献   

7.
Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.  相似文献   

8.
The conventional electrolytic water-splitting process for hydrogen production is plagued by high energy consumption, low efficiency, and the requirement of expensive catalysts. Therefore, finding effective, affordable, and stable catalysts to drive this reaction is urgently needed. We report a nanosheet catalyst composed of carbon nanotubes encapsulated with MoC/Mo2C, the Ni@MoC-700 nanosheet showcases low overpotentials of 275 mV for the oxygen evolution reaction and 173 mV for the hydrogen evolution reaction at a current density of 10 mA ⋅ cm−2. Particularly noteworthy is its outstanding performance in a two-electrode system, where a cell potential of merely 1.64 V is sufficient to achieve the desired current density of 10 mA ⋅ cm−2. Furthermore, the catalyst demonstrates exceptional durability, maintaining its activity over a continuous operation of 40 hours with only minimal attenuation in overpotential. These outstanding activity levels and long-term stability unequivocally highlight the promising potential of the Ni@MoC-700 catalyst for large-scale water-splitting applications.  相似文献   

9.
Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel‐structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm?2 at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non‐precious‐metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.  相似文献   

10.
周澳  郭伟健  王月青  张进涛 《电化学》2022,28(9):2214007
电解水是有效的产氢方式之一, 开发具有高催化活性的电极材料是当前电解水的研究热点,但仍面临诸多挑战。 本研究报告了一种通过焦耳热技术快速制备多金属异质结构, 并将其用作电解水的双功能电催化剂, 展现出优异的电解水催化活性。通过焦耳热处理三种金属前驱涂覆的碳布, Mo2C和CoO/Fe3O4异质结构形成。当其用作析氢(HER)和析氧(OER)的双功能催化剂时, 仅需121 mV和268 mV的过电位,可以实现10 mA·cm-2的电流密度。当用于两电极电解水时, MoC/FeO/CoO/CC作为阳极和阴极催化剂表现出优异的电催化性能和长期稳定性, 仅需1.69 V即可实现10 mA·cm-2的电流密度, 并且展现出25小时的稳定性。本研究通过简单、 快速的焦耳热技术实现了双金属/多金属异质结构的构筑,并应用于高效水电解,为合理设计多金属异质结构提供指导。  相似文献   

11.
Given the limited access to freshwater compared to seawater, a growing interest surrounds the direct seawater electrolysis to produce hydrogen. However, we currently lack efficient electrocatalysts to selectively perform the oxygen evolution reaction (OER) over the oxidation of the chloride ions that are the main components of seawater. In this contribution, we report an engineering strategy to synthesize heterogeneous electrocatalysts by the simultaneous formation of separate chalcogenides of nickel (NiSx, x = 0, 2/3, 8/9, and 4/3) and cobalt (CoSx, x = 0 and 8/9) onto a carbon-nitrogen-sulfur nanostructured network. Specifically, the oxidative aniline polymerization in the presence of metallic cations was combined with the calcination to regulate the separate formation of various self-supported phases in order to target the multifunctional applicability as both hydrogen evolution reaction (HER) and OER in a simulated alkaline seawater. The OER’s metric current densities of 10 and 100 mA cm−2 were achieved at the bimetallic for only 1.60 and 1.63 VRHE, respectively. This high-performance was maintained in the electrolysis with a starting voltage of 1.6 V and satisfactory stability at 100 mA over 17 h. Our findings validate a high selectivity for OER of ~100%, which outperforms the previously reported data of 87–95%.  相似文献   

12.
电催化水分解反应是可以实现规模化制取氢气的一种重要绿色无污染的手段,但是其效率极大地受制于阳极析氧反应. 因此,发展廉价、高效的析氧反应催化剂是当下的研究热点. 通过分析决定析氧反应催化活性的因素,本综述总结了低成本、高效、稳定的析氧电催化剂的一些通用设计与制备策略,包括:1)通过电子结构调控、结晶度调控、相调控、缺陷位调控以及自旋态调控提升单个催化活性位点的本征催化活性;2)设计与构筑先进电极结构,以实现活性位点数量最大化,获得大电流下稳定的电极材料. 进而,选取了一些具有代表性的高效析氧催化剂作为例子来阐述这些策略的实用性. 最后,对高效、可在大电流密度下稳定工作的析氧催化剂的理性设计、可控制备和发展方向提出了展望,以期为新型高性能析氧催化剂的设计提供指导.  相似文献   

13.
Electrochemical water splitting is one of the potential approaches for making renewable energy production and storage viable. The oxygen evolution reaction (OER), as a sluggish four-electron electrochemical reaction, has to overcome high overpotential to accomplish overall water splitting. Therefore, developing low-cost and highly active OER catalysts is the key for achieving efficient and economical water electrolysis. In this work, Fe-doped NiMoO4 was synthesized and evaluated as the OER catalyst in alkaline medium. Fe3+ doping helps to regulate the electronic structure of Ni centers in NiMoO4, which consequently promotes the catalytic activity of NiMoO4. The overpotential to reach a current density of 10 mA cm−2 is 299 mV in 1 m KOH for the optimal Ni0.9Fe0.1MoO4, which is 65 mV lower than that for NiMoO4. Further, the catalyst also shows exceptional performance stability during a 2 h chronopotentiometry testing. Moreover, the real catalytically active center of Ni0.9Fe0.1MoO4 is also unraveled based on the ex situ characterizations. These results provide new alternatives for precious-metal-free catalysts for alkaline OER and also expand the Fe-doping-induced synergistic effect towards performance enhancement to new catalyst systems.  相似文献   

14.
电催化水分解是一种高效制备清洁氢气能源的有效方法. 开发高效、稳定、廉价、双功能的电催化剂用于水的氧化与还原反应一直以来都是具有挑战的课题. 在这篇论文中,作者报道了一种生长在碳布上高活性的硒化镍微球. 该催化剂通过对同时包含镍和硒元素的亚硒酸镍配合物进行电解制备. 由于前驱分子同时含有两种有效元素,制备得到的硒化镍具有很好的形貌和元素分步均一性. 制备得到的NiSe-EA/CC电极能够双功能催化水的氧化与还原. 在154 mV析氢过电势下能达到10 mA·cm-2的催化电流. 同时,在250 mV析氧过电势下能达到20 mA·cm-2电催化电流. 用该电极材料同时作为阴极和阳极制备的全电解水电解池能在1.53 V的电压下实现10 mA·cm-2的稳定电解电流.  相似文献   

15.
The correlation between metal coordination and electrocatalytic water oxidation performance is elusive in many cobalt‐based materials. Herein, we designed an ideal Co phosphate‐based platform to explore the effect of coordination environment on oxygen evolution reaction (OER) activity. The cobalt geometry was modulated from octahedral to tetrahedral by simple removal of water ligands in Co3(PO4)2?8 H2O. Other features except the coordination structure in the two autologous materials remain similar. The two analogues display the same OER kinetics, but the anhydrous Co3(PO4)2 exhibits a greatly enhanced OER activity. On the basis of Raman and operando XAS results, the higher intrinsic activity of the Co tetrahedral sites is because they facilitate the formation of active high valent cobalt (hydr)oxide intermediates during OER. This work not only brings insights of OER on Co‐based electrocatalysts but also provides a reference system to study the effect of metal geometry on electrocatalysis.  相似文献   

16.
We report a synthetic method to enhance the electrocatalytic activity of birnessite for the oxygen evolution reaction (OER) by intercalating Ni2+ ions into the interlayer region. Electrocatalytic studies showed that nickel (7.7 atomic %)‐intercalated birnessite exhibits an overpotential (η) of 400 mV for OER at an anodic current of 10 mA cm?2. This η is significantly lower than the η values for birnessite (η≈700 mV) and the active OER catalyst β‐Ni(OH)2 (η≈550 mV). Molecular dynamics simulations suggest that a competition among the interactions between the nickel cation, water, and birnessite promote redox chemistry in the spatially confined interlayer region.  相似文献   

17.
Electrolytic water technology is promising for sustainable energy utilization, but the lack of efficient electrocatalysts retards its application. The intrinsic activity of electrocatalysts is determined by its electronic structure, whereas the apparent activity can be further optimized by reasonable design on micro-/nanostructures of electrocatalysts. The core goal of electrocatalytic research is to reveal the relationship between the structure and performance of electrocatalysts, which is also the basis of reasonable design and construction of efficient electrocatalysts. Traditional synthetic methods, namely bottom-up and top-down routes, usually induce the change of different structural parameters at the same time. The solid-state conversion strategy, which is converts solid precursors into target materials through chemical reactions, has been widely adopted to produce materials with precisely controllable structures. In this Minireview, we focus on recent advances in the solid-state conversion synthesis of water-splitting electrocatalysts. First, the basis of solid-state conversion chemistry is introduced. Then, the specific methods of precise control of electronic structure by solid-state conversion and the relationship between electronic structure and performance are summarized. Based on the understanding of the electronic structure–performance relationship, synergistic regulation of electronic structure and micro-/nanostructures by solid-state conversion to achieve the copromotion of intrinsic activity and apparent activity are described. Finally, the remaining challenges in this field are discussed, and future research directions are proposed as well.  相似文献   

18.
To realize the effective conversion of renewable energy through water decomposition, efficient electrocatalysts for the oxygen evolution reaction (OER) are essential. In this article, PBA@POM was successfully prepared with a Prussian blue analogue (PBA) as the initial structure. A facile hydrothermal process is reported for obtaining PBA@POM by etching the cubic PBA with a strong Brønsted acid, H3PMo12O40 (HPMo). The hollow cube structure not only exposes more active sites but also promotes electron transport, which results in excellent electrocatalytic activity for the OER. Compared with the PBA, which initially simply adhered to POM, the optimum PBA@POM hybrids display remarkably enhanced OER catalytic activity, with an almost constant overpotential of 440 mV at a current density of 10 mA cm?2 and a small Tafel slope (23.45 mV dec?1). The facilely prepared PBA@POM with good electrochemical activity and stability promises great potential for the OER.  相似文献   

19.
20.
The cobalt–seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm−2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt–seleno-based complex exhibits a high mass activity (14.15 A g−1) and a much higher turn-over frequency (TOF) value (0.032 s−1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt–seleno systems as efficient OER electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号