首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic Liquids-New "Solutions" for Transition Metal Catalysis   总被引:2,自引:0,他引:2  
Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.  相似文献   

2.
杨玉川  魏莉  金子林 《有机化学》2004,24(6):579-584
温控非水液/液两相催化,是指一类由两种或多种液态有机物组成的催化反应体系,其特点是体系的相态变化可通过温度来调控,即体系在高温时相互混溶呈均相,低温不溶分成两相,催化剂和产物分别处于两相,从而为解决均相催化剂分离难的问题开拓了一个新方向,是液/液两相催化研究领域最引人注目的进展之一.首次以"温控"为主线将氟两相催化作为温控液/液两相催化的一个特定类型纳入"温控非水液/液两相催化"范畴,并与其它通过温度来调控的有机液/液两相和作者提出的温控相分离催化串在一起作一较为详细的评述.  相似文献   

3.
温控配体与液/液两相催化   总被引:2,自引:2,他引:2  
 以作者近年的研究工作为主,对液/液两相催化研究领域取得的进展做一综述.着重介绍了以温控配体为基础的新型液/液两相催化过程温控相转移催化(thermoregulatedphasetransfercatalysis,TRPTC)和温控相分离催化(thermoregulatedphase-separablecatalysis,TPSC)的基本原理及其在高碳烯烃氢甲酰化、芳香硝基化合物的CO选择性还原及烯烃加氢等反应中的应用.基于温控配体在水中的“浊点”特性而提出的温控相转移催化概念,为从根本上解决水/有机两相催化 的适用范围受底物水溶性限制的问题提供了一条新途径.而利用温控配体在某些有机溶剂中存在临界溶解温度(CST)的特性而实现的温控相分离催化,则使在高于临界溶解温度的反应温度时为均相的反应体系,在低温(<CST)时则分成两相,催化剂自成一相,形成一种具有“均相反应、两相分离”特色的液/液两相催化新体系.  相似文献   

4.
There is currently a significant increase in the use of glycerol as a renewable solvent for catalytic reactions. Glycerol has often been the solvent of choice in both homogeneous and heterogeneous catalyses, despite its high viscosity at ambient temperature and the low solubility of highly hydrophobic reagents found in glycerol. Its biodegradability and non-toxicity have led to reports of improved reaction performance and selectivity, as well as easier product separation and effective catalyst recycling. All relevant advances in this emerging field of “green” catalysis are thoroughly reviewed below.  相似文献   

5.
Although transition-metal complexes are very attractive as homogeneous catalysts in fine chemistry, their high prices often limit their applications. A means to recycle those catalysts would solve this problem and would simultaneously facilitate the downstream purification of the product. This is now realized in a new concept in which homogeneous catalysis is coupled to dialysis. The advantages of homogeneous catalysis (off-the-shelf catalysts, high activities and selectivities) are thus combined with those of heterogeneous catalysis (easy catalyst separation from product solution, reuse of catalyst, and possibility for continuous operation). Since the heart of the process is the membrane, self-prepared membranes were preferred as they allow a better control and understanding of the separation characteristics. Rhodamine B was used as a probe molecule to define the working conditions of the membrane. The concept is proven to work for two relevant chiral reactions: a hydrogenation with Ru-BINAP and a hydrogen transfer reaction with Ru-TsDPEN [BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine); TsDPEN= tosyl-N,N'-diphenyl-1,2-ethanediamine].  相似文献   

6.
Switchable-polarity solvents prepared with a single liquid component   总被引:2,自引:0,他引:2  
Known liquids that can reversibly switch their polarity at atmospheric pressure are all prepared as mixtures of two liquid components; we now report a series of switchable-polarity solvents that consist, in their low-polarity form, of only a single liquid component, a secondary amine. These solvents operate in a polarity range that is significantly lower than those of previously reported switchable solvents. Application to the separation and purification of a polymer and recovery of a catalyst is described.  相似文献   

7.
The MacMillan iminium catalyst was investigated for asymmetric Diels-Alder cycloadditions in ionic liquid/H2O homogeneous phase. Superior selectivity, product yield, and shorter reaction times were observed in comparison with classical organic solvents. Additional advantages are the easy synthetic procedure, the excellent recovery of products, and the recyclability of the whole system.  相似文献   

8.
金属络合物的相转移催化分析与分离   总被引:2,自引:0,他引:2  
纪红兵  王乐夫 《有机化学》2003,23(6):513-517
以可简单分离回收、可反复使用为目标,详细介绍了相转移催化的变化发展过 程.通过对溶剂的选择,使得催化剂选择性地溶解在某一液相中,而使产物溶解在 另一液相中,如水-有机两相催化体系;通过温度的变化,简单地实现了在较高温 度下反应为均相体系以提高催化剂的活性,而在较低温度下实现了催化剂与产物不 相溶使得催化剂得以简单分离,如温控型水-有机两相催化体系、氟-有机两相催化 体系、温控型含氟催化剂、温控型有机金属催化剂等.  相似文献   

9.
《Fluid Phase Equilibria》2004,219(1):93-98
Room temperature ionic liquids are salts that are liquid at room temperature and their use as catalysts and catalytic support has been studied extensively. They are also being considered as “green solvents” for various separation processes. Recent measurements reported on the properties of pure ionic liquids and their mixtures, including gas and liquid solubility in common organic solvents will be reviewed. While some property values are in good agreement, some show large differences. These values will be compared and reasons for the discrepancies will be conjectured. Since traditional approaches to predicting the properties of fluid liquids require extensive LLE and VLE measurements, alternative predictive methods need to be explored. The predictions of the properties of mixtures of ionic liquids using COSMOtherm, an approach based on unimolecular quantum chemical calculations of the individual molecules, will be presented.  相似文献   

10.
Yi-Ming Ren  Ren-Chun Yang 《合成通讯》2016,46(15):1318-1325
A series of 3-arylbenzoquinoline, pyranoquinoline, and thiopyranoquinoline derivatives have been synthesized by one-pot, multicomponent reaction of aromatic aldehyde, naphthalen-2-amine, and ketone using polyethylene glycol (PEG1000)–based dicationic acidic ionic liquid as recyclable catalyst with high yields. The PEG ionic liquid and toluene have the advantages of both homogeneous and heterogeneous phases at different temperatures (biphasic conditions at lower temperatures and monophasic at higher temperatures) with the ease of product as well as catalyst separation. Recycling studies have shown that the ionic liquid can be readily recovered and reused several times without significant loss of activity.  相似文献   

11.
This brief review presents the recent development in the synthesis of cyclic carbonate from carbon dioxide (CO2) using ionic liquids as catalyst and/or reaction medium. The synthesis of cyclic carbonate includes three aspects: catalytic reaction of CO2 and epoxide, electrochemical reaction of CO2 and epoxide, and oxidative carboxylation of olefin. Some ionic liquids are suitable catalysts and/or solvents to the CO2 fixation to produce cyclic carbonate. The activity of ionic liquid is greatly enhanced by the addition of Lewis acidic compounds of metal halides or metal complexes that have no or low activity by themselves. Using ionic liquids for the electrochemical synthesis of the cyclic carbonate can avoid harmful organic solvents, supporting electrolytes and catalysts, which are necessary for conventional electrochemical reaction systems. Although the ionic liquid is better for the oxidative carboxylation of olefin than the ordinary catalysts reported previously, this reaction system is at a preliminary stage. Using the ionic liquids, the synthesis process will become greener and simpler because of easy product separation and catalyst recycling and unnecessary use of volatile and harmful organic solvents.  相似文献   

12.
[formula: see text] A novel fluorous room-temperature ionic liquid, 1-butyl-3-methyl-imidazolium tetrakis[p-[dimethyl(1H, 1H, 2H, 2H-perfluorooctyl)silyl]phenyl]-borate (1), was used as a solvent for the homogeneous hydrosilylation of 1-octene catalyzed by a fluorous version of Wilkinson's catalyst. The catalyst was recycled by biphasic separation with an average retention of catalyst activity of 94%. As opposed to other ionic liquids, 1 exhibits high miscibility with apolar compounds such as alkenes and resembles fluorous solvents in its phase behavior with organic solvents.  相似文献   

13.
PEG型酸性温控离子液体中芳香酸和醇的酯化反应   总被引:4,自引:0,他引:4  
报道了该催化体系在芳香酸和醇酯化反应中的应用. 研究发现, 该离子液体具有优良的催化性能, 产品易分离, 催化剂可循环使用且活性不降低, 催化剂不易流失, 实现了均相催化剂的高效回收和再利用.  相似文献   

14.
冯博  胡玉  李欢  侯震山 《有机化学》2008,28(3):381-389
非均相催化过程中常常出现产物的转化率低选择性差的问题, 而均相催化过程往往具有优异的催化性能, 但是却受制于催化剂、产物难于分离而达到循环使用的缺点. 近年来两相催化体系的发展为这些问题的解决提供了一条新途径. 超临界二氧化碳/聚乙二醇参与的两相体系是使用超临界二氧化碳作流动相, 聚乙二醇作为另一溶剂之一, 用于固定和稳定催化剂, 进行有机催化反应. 其显著特点是: 可在反应的同时实现分离的操作, 可实现均相催化过程的连续化. 综述了超临界二氧化碳/聚乙二醇体系的相行为及其性质, 并介绍了其在催化合成反应中的应用.  相似文献   

15.
采用2,4,6-三氯-1,3,5-三嗪对四氨基钴酞菁进行改性,并以共价键接枝到聚N-异丙基丙烯酰胺上制得一种新型温敏性高分子催化剂——钴酞菁接枝温敏聚合物,并采用UV-Vis、TG等对其进行表征.对钴酞菁接枝温敏聚合物、温敏聚合物和小分子金属酞菁进行溶解性测试,结果表明与四氨基钴酞菁相比,所合成的钴酞菁接枝温敏聚合物能溶解于水和大多数有机溶剂,且该聚合物水溶液具有良好的温敏性,其最低临界溶解温度(LCST)为34.5℃.采用浊度法考察了不同比例的混合溶剂(乙醇/水、DMF/水)对LCST的影响,结果表明随着有机溶剂含量的增加,LCST先下降后升高,而当有机溶剂增加到一定程度时温敏性消失.本文还考察了钴酞菁接枝温敏聚合物对2-巯基乙醇的催化活性,结果表明随着温度升高,催化活性也不断提高,而当温度超过LCST时催化活性急剧下降,聚合物从溶液中析出.基于这些特性,该温敏聚合物负载酞菁作为一种新型的催化剂可实现均相催化、异相分离.  相似文献   

16.
A new pyrene‐tagged gold(I) complex has been synthesised and tested as a homogeneous catalyst. First, a simple 1,6‐enyne was chosen as a model substrate for cyclisation by using different solvents to optimise the reaction conditions. The non‐covalent immobilisation of our pyrene‐tagged gold complex onto multi‐walled carbon nanotubes through π–π stacking interactions was then explored to obtain a supported homogeneous catalyst. The heterogenised catalyst and its homogeneous counterpart exhibited similar activity in a range of enyne cyclisation reactions. Bearing in mind that π–π interactions are affected by temperature and solvent polarity, the reuse and robustness of the supported homogeneous catalyst was tested to explore the scope and limitations of the recyclability of this catalyst. Under the optimised conditions, recyclability was observed by using the concept of the boomerang effect.  相似文献   

17.
The separation and recycling of catalyst and cocatalyst from the products and solvents are of critical importance. In this work, a class of functionalized ionic liquids (ILs) were designed and synthesized, and by tuning the hydrophilicity and hydrophobicity of cation and anion, respectively, these ILs could reversibly transfer between water and organics triggered upon undergoing a temperature change. From a combination of multiple spectroscopic techniques, it was shown that the driving force behind the transfer was originated from a change in conformation of the PEG chain of the IL upon temperature variation. By utilizing the novel property of this class of ILs, a highly efficient and controllable CuI‐catalyzed cycloaddition reaction was achieved wherein the IL was used to entrain, activate, and recycle the catalyst, as well as to control the reaction.  相似文献   

18.
《Comptes Rendus Chimie》2007,10(3):152-177
Over the last years, interest involving ionic liquids (ILs) used as reaction medium for homogeneous enantioselective catalysis has exponentially expanded. In many cases, the use of ILs provides several advantages over reactions in organic solvents in terms of activity and enantioselectivity. Even more important, the catalyst immobilization in IL can avoid its leaching and consequently favour its recycling. This review deals with recent advances in the investigation of these new solvents in asymmetric catalysis. We go over enzymes, chiral organocatalysts and metal complexes containing chiral ligands used in enantioselective processes using ionic liquids, with special emphasis on the catalyst reuse and also the separation of organic products.  相似文献   

19.
张耀  应芝  文振中  郑晓园 《应用化学》2018,35(4):394-400
热化学硫碘(S-I)循环分解水是目前有较高效率且可以在相对较低温度条件下进行的制氢方法之一。 其中的Bunsen反应作为循环的核心步骤尤为重要。 为了更方便有效地分离Bunsen反应的生成物硫酸与氢碘酸,许多学者研究了Bunsen反应的新方法。 本文对非水溶剂中的Bunsen反应和电化学Bunsen反应两种新方法进行了综述。 讨论了非水溶剂中实现反应生成物分离的方法,对比了各种非水溶剂的性质及其优缺点。 目前,所发现的溶剂在分离生成物方面已达到要求,可用于Bunsen反应,但溶剂的回收再利用比较困难。 概述了电化学Bunsen反应的研究现状,对目前在电化学Bunsen反应中有突破进展的两个团队的工作进行了对比。 现今对该方法的探讨主要集中在反应基础特性方面,未来可以加强电化学Bunsen反应机理、反应电池结构设计与优化、以及新型S-I循环系统构造的研究。  相似文献   

20.
Yoon JH  Park YJ  Lee JH  Yoo J  Jun CH 《Organic letters》2005,7(14):2889-2892
[reaction: see text] A new recyclable supported catalyst system for orthoalkylation was devised using a self-assembly consisting of the barbiturate and 2,4,6-triaminopyrimidine H-bonding motifs. At high temperature, the system is completely homogeneous so as to give an efficient catalytic activity, while it is heterogenized at room temperature to form an insoluble solid phase for the easy recovery of the catalyst after the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号