首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650–900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed.  相似文献   

2.
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650–900 nm, conventional optical imaging often has a poor signal‐to‐background ratio and shallow penetration depth, which limits its ability in deep‐tissue in vivo imaging. Second near‐infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near‐infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep‐tissue imaging are also discussed.  相似文献   

3.
一氧化氮荧光分子探针   总被引:1,自引:0,他引:1  
张灯青  赵圣印  刘海雄 《化学进展》2008,20(9):1396-1405
一氧化氮(NO)在生物体中扮演重要的角色,对其选择性识别引起了人们极大的兴趣。本文综述了两类NO荧光分子探针的研究进展,即含金属离子的NO荧光分子探针:如Co(Ⅱ)、Fe(Ⅱ)、 Ru(Ⅱ)、Rh(Ⅱ)和Cu(Ⅱ)配合物作为荧光打开的NO分子探针;邻苯二胺类荧光分子探针:如2,3-二氨基萘(DAN)、二氨基荧光素衍生物(DAFs)、二氨基罗丹明衍生物(DARs)、硼二吡咯甲基衍生物(BODIPY)和三碳菁衍生物(DAC)等。  相似文献   

4.
Deep tissue bioimaging with three‐photon (3P) excitation using near‐infrared (NIR) light in the second IR window (1.0–1.4 μm) could provide high resolution images with an improved signal‐to‐noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor‐π‐acceptor system (GMP) having 3P cross‐section (σ3) of 1.78×10?80 cm6 s2 photon?2 and action cross‐section (σ3η3) of 2.31×10?81 cm6 s2 photon?2, which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn2+ binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10?80 cm6 s2 photon?2 and σ3η3 of 3.33×10?81 cm6 s2 photon?2. The application of this probe is demonstrated for ratiometric 3P imaging of Zn2+ in vitro using HuH‐7 cell lines. Furthermore, the Zn2+ concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn2+ ion imaging.  相似文献   

5.
There is a persistent need for small‐molecule fluorescent labels optimized for single‐molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red‐shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed “DCDHF” fluorophores, for use in live‐cell imaging based on the push–pull design: an amine donor group and a 2‐dicyanomethylene‐3‐cyano‐2,5‐dihydrofuran (DCDHF) acceptor group, separated by a π‐rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red‐emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low‐intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small‐molecule fluorophores, which are needed for super‐resolution imaging schemes that require active control (here turning‐on) of single‐molecule emission.  相似文献   

6.
A 2D coordination compound {[Cu2(HL)(N3)]?ClO4} ( 1 ; H3L=2,6‐bis(hydroxyethyliminoethyl)‐4‐methyl phenol) was synthesized and characterized by single‐crystal X‐ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]?2H2O ( 2 ); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19‐fold Zn2+‐selective chelation‐enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.  相似文献   

7.
Aggregation‐induced emission (AIE) luminogens show abnormal fluorescent behavior; they are non‐emissive in solution, but they become strongly emissive after aggregation. Sensing and imaging are the major applications of AIE luminogens. By properly manipulating the aggregation and deaggregation of AIE molecules, various bio‐/chemosensors have been developed. Moreover, AIE molecules with targeting groups have been devised for imaging of organelles and cancer cells. In this account, we report our recent work on the application of AIE luminogens for the construction of bio‐/chemosensors and imaging.

  相似文献   


8.
A multifunctional system for intracellular drug delivery and simultaneous fluorescent imaging was constructed by using histidine‐tagged, cyan fluorescent protein (CFP)‐capped magnetic mesoporous silica nanoparticles (MMSNs). This protein‐capped multifunctional nanostructure is highly biocompatible and does not affect cell viability or proliferation. The CFP acts not only as a capping agent, but also as a fluorescent imaging agent. The nanoassembly was activated by histidine‐based replacement, leading to release of drug molecules encapsulated in the nanopores into the bulk solution. The fluorescent imaging functionality would allow noninvasive tracking of the nanoparticles in the body. By combining the drug delivery with cell‐imaging capability, these nanoparticles may provide valuable multifunctional nanoplatforms for biomedical applications.  相似文献   

9.
生物小分子NO以其重要的生理学和病理学作用受到科学家们的广泛关注。高选择性、高灵敏度、低毒性NO分子荧光探针的设计和开发,在环境检测、食品安全及人体内NO检测等领域具有重要意义。本文以小分子荧光探针对NO的识别机制为主线,从唑环的形成、螺内酰胺开环、还原脱氨、二氢吡啶的芳构化、NO与金属络合物的反应、与非金属Se的反应和亚硝胺的形成出发,综述了近年来NO小分子荧光探针的研究进展。对NO探针设计及其识别性能研究方面的工作进行了总结,并讨论了NO荧光探针今后的设计思路和重点研究方向。  相似文献   

10.
The development of sensitive and selective small molecular probes that enable real‐time detection of endogenous cysteine (Cys) has become an attractive topic because of the essential roles played by Cys in controlling the cellular nitrogen balance and in maintaining biological redox homeostasis. Herein, we report a Cys‐specific probe, 2‐cyanobenzothiazol‐6‐yl acrylate (CBTOA), that shows not only fluorescence turn‐on for sensitive detection of endogenous Cys but also enhanced probe retention inside cells for real‐time monitoring of Cys levels upon external stimulation. Cys‐mediated intracellular formation of luciferin from CBTOA was the key strategy leading to this new type of fluorogenic probe. CBTOA showed fast response to Cys in living cells and liver tissue slices with high sensitivity and selectivity. By using CBTOA as a real‐time probe, we were able to monitor the change in Cys levels in living HeLa cells under ROS‐induced oxidative stress as well as in human mesenchymal stem cells during adipogenic differentiation.  相似文献   

11.
Viscosity, as a vital microenvironment parameter, is tightly associated with multitudinous cellular processes and diseases. Recently, precise visualization of viscosity has started to arouse more and more interest. However, owing to the complicated character, it is still a huge challenge to directly observe viscosity in living systems. In this regard, mounting fluorescence probes are being increasingly fabricated to map viscosity inside live cells and small animals. In this minireview, the viscosity-sensitive small molecular fluorescent probes used in bioimaging are comprehensively summarized, mainly focusing on the last three years. Moreover, the current challenges and opportunities for the development of viscosity-specific fluorescent probes will be discussed.  相似文献   

12.
13.
Alkaline phosphatase (ALP) is associated with many diseases, and its accurate detection is of great significance. Fluorescent compounds with aggregation‐induced emission (AIE) feature show beneficial advantages for serving as fluorescent probes. Herein, an AIE‐active “turn on” probe for ALP detection was synthesized through incorporating a strong electron‐withdrawing group (cyano) in the middle and the recognition moiety phosphate group at the end, thereby rendering a D–A–D structure with a relatively high conjugation degree and good water solubility. It was found that the probe TPE‐CN‐pho is highly sensitive to ALP in aqueous solution. In the presence of ALP, the hydrophilic phosphate group on the probe is rapidly removed, resulting in a decrease in water solubility and subsequent formation of aggregates, thereby achieving aggregation‐induced emission. Moreover, the probe TPE‐CN‐pho has also been successfully applied to imaging ALP in living cells.  相似文献   

14.
Photoactivatable fluorophores are useful tools in live‐cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle‐specific live‐cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water‐soluble, non‐cytotoxic, cell‐permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre‐activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single‐cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single‐ or multi‐cell labeling experiments.  相似文献   

15.
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.  相似文献   

16.
17.
Thiophenols are highly toxic industrial materials that, once released, will accumulate in the environment, and ultimately in human bodies, thereby causing serious health problems. To achieve their selective and sensitive detection, a novel near‐infrared (NIR) fluorescent probe ( CCP‐1 ) from a focused library was developed for thiophenol species. Our studies show that CCP‐1 displays a thiophenol‐triggered 28‐fold fluorescence intensity enhancement at 706 nm, with a detection limit of 34 nm observed. It is also able to differentiate thiophenols from various other thiol‐containing analytes including hydrogen sulfide, hydrogen persulfide, and aliphatic thiols. In total, the desirable properties (e.g., excitation/emission in the NIR region, good cell‐membrane permeability, intracellular stability, and low cytotoxicity) make CCP‐1 a potential candidate for thiophenol detection both in vitro and in vivo. In addition, CCP‐1 , for the first time, successfully visualized thiophenols in mice models of thiophenol inhalation.  相似文献   

18.
Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule with multiple biological functions. In order to visualize the endogenous in situ production of H2S in living cells in real time, here we developed multi‐fluorinated azido coumarins as fluorescent probes for the rapid and selective detection of biological H2S. Kinetic studies indicated that an increase in fluorine substitution leads to an increased rate of H2S‐mediated reduction reaction, which is also supported by our theoretical calculations. To our delight, tetra‐fluorinated coumarin 1 could react with H2S fast (t1/2≈1 min) and selectively, which could be further used for continuous enzymatic assays and for visualization of intracellular H2S. Bioimaging results obtained with 1 revealed that d ‐Cys could induce a higher level of endogenous H2S production than l ‐Cys in a time‐dependent manner in living cell.  相似文献   

19.
半导体量子点的独特光学性质使之成为理想的荧光探针材料,在生物医学领域具有广阔的应用前景.本文评述了目前量子点合成、表面修饰、结合生物分子的方法,以及半导体量子点在生物标记应用中相对于传统有机染料的优点.  相似文献   

20.
Chemical biologists have developed many tools based on genetically encoded macromolecules and small, synthetic compounds. The two different approaches are extremely useful, but they have inherent limitations. In this Minireview, we highlight examples of strategies that combine both concepts to tackle challenging problems in chemical biology. We discuss applications in imaging, with a focus on super‐resolved techniques, and in probe and drug delivery. We propose future directions in this field, hoping to inspire chemical biologists to develop new combinations of synthetic and genetically encoded probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号