首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reaction of the potassium salts of RC(S)NHP(S)(OiPr)2 (R = PhNH, HL I; Ph, HL II) with a mixture of AgNO3 and Ph2P(CH2)1 − 3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Ag2(Ph2PCH2PPh2)2LINO3] ( 1 ), [Ag{Ph2P (CH2)2PPh2}LI,II] ( 2, 6 ), [Ag{Ph2P(CH2)3PPh2}LI,II] ( 3, 7 ), [Ag{Ph2P(C5H4FeC5H4)PPh2}LI,II] ( 4, 8 ), and [Ag2(Ph2PCH2PPh2)LII2] ( 5 ) complexes. The structures of these compounds were investigated by 1H and 31P{1H} NMR spectroscopy and elemental analyses. It was established that the binuclear complexes 1 and 5 are luminescent in the solid state at ambient conditions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:386–391, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20627  相似文献   

2.
The in vitro antifungal activity of the dithiocarbamate organotin complexes [Sn{S2CN(CH2)4}2Cl2] ( 1 ), [Sn{S2CN(CH2)4}2Ph2] ( 2 ), [Sn{S2CN(CH2)4}Ph3] ( 3 ), [Sn{S2CN(CH2)4}2n‐Bu2] ( 4 ), [Sn{S2CN(CH2)4}Cy3] {Cy = cyclohexyl} ( 5 ), [Sn{S2CN(C2H5)2}2Cl2] ( 6 ), [Sn{S2CN(C2H5)2}2Ph2] ( 7 ), [Sn{S2CN(C2H5)2}Ph3] ( 8 ), [Sn{S2CN(C2H5)2}3Ph] ( 9 ) and [Sn{S2CN(C2H5)2}Cy3] ( 10 ) has been screened against Candida albicans (ATCC 18804), Candida tropicalis (ATCC 750) and resistant Candida albicans collected from HIV‐positive Brazilian patients with oral candidiasis. All compounds exhibited antifungal activities and complexes 3 and 8 displayed the best results. We have investigated the effect of compounds 1–10 on the cellular activity of the yeast cultures. Changes in mitochondrial function have not been detected. However, all drugs reduced ergosterol biosynthesis. Preliminary studies on DNA integrity indicated that the compounds do not cause gross damage to yeast DNA. The data suggest that these compounds share some mechanisms of action on cell membranes similar to that of polyene but not with azole drugs, normally used in Candida infections. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Neutral polyfluorophenyl complexes of the type RAuL and RAuL-LAuR and anionic complexes of the type [AuR2]? (R = 2,3,5,6-C6F4H, 2,4,6-C,F3H2, 3,6-C6F2H3, 4-C6 FH4 or 3-CF3C,H4) are obtained by the reaction of ClAuL (L = PPh3, P(cyclohexyl)3, AsPh3 or tetrahydrothiophen; L-L = Ph2PCH2PPh2 or Ph2PCH2CH2PPPh2) with an organolithium derivative and/or the replacement of the initial ligands L by other mono- or bi-dentate ligands.The outcome of the reaction of [AuR2]? with [Au(PCy3)2]+ (Cy = cyclohexyl), depends on the nature of the ligand R; thus with R = 3,6-C6,F2H3 the product is [Au(PCy3)2][AuR2], while with R = 2,4,6-C6F3H2, the product is [Au(PCy3)(2,4,6-C6F3H2)].  相似文献   

4.
Photo-reaction between the ligands Ph2ECH2EPh2 (E = P: dppm, E = As: dpam, E = Sb: dpsm), L, and the vanadium complexes η5-C5H5V(CO)4 and [Et4N][V(CO)6] yields monosubstituted mononuclear (dpsm) and dinuclear, ligand-bridged complexes (dpam, dpsm). With dppm, the final products are disubstituted chelate complexes, but monosubstituted mono- and dinuclear species are formed as intermediates.The shielding of the 51V nucleus decreases in the series dpsm > dppm > dpam and {M(CO)n} > {M(CO)n?1} L > {M(CO)n?1}2μ-L > {M(CO)n?2}dppm ({M(CO)n}[V(CO)6]?, η5-C5H5V(CO)4). The half-widths of the NMR signals are greater for dinuclear than for mononuclear complexes.The crystal and molecular structures of η5-C5H5V(CO)3As2Ph4 have been determined. The compound crystallizes in the space group P21/c with a = 1347.8, b = 1020.0, c = 2085.2 pm and β = 82.3°. Due to steric crowding, the 51V shielding is low composed to that of {η5-C5H5V(CO)3}2μ-dpam.  相似文献   

5.
The catalytic activities of the highly fluorous systems formed by the zirconocene(IV) complexes [Zr{η5-C5H4SiMe2C2H4RF}2Cl2] (RF = C6F13 (4a), C10F21 (4b)) or [Zr-{η5-C5H3(SiMe2C2H4C6F13)2}2Cl2] (5a) and MMAO in toluene have been studied and compared with analogous nonfluorous systems generated from [Zr{η5-C5H4SiMe3}2Cl2] and [Zr{η5-C5H5}2Cl2]. Although less active than the reference systems, the fluorous catalysts are stable over prolonged polymerization times, giving rise to polymers with similar molecular weights to those obtained with [Zr{η5-C5H4SiMe3}2Cl2].  相似文献   

6.
The structures and spectroscopic properties of nickel(II), zinc(II), and copper(II) complexes with dibutyl- and diisobutyldithiocarbamate were studied by EPR and 13C and 15N CP/MAS NMR spectroscopy and X-ray diffraction analysis. According to the EPR data, copper(II) forms mononuclear [63/65Cu{S2CNR2}2] and heterobinuclear complexes [63/65CuZn{S2CNR2}4] under magnetic dilution conditions. The isomeric forms of nickel(II) and zinc(II) diisobutyldithiocarbamates were detected by 13C and 15N NMR spectroscopy. The crystalline zinc(II) diisobutyldithiocarbamate was found to have a unique structural organization with alternating mononuclear [Zn{S2CN(i-C4H9)2}2] and binuclear molecular forms [Zn2{ S2CN(i-C4H9)2}4] in the 1 : 1 ratio.  相似文献   

7.
Large bite bisphosphite ligand, 2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2 (2), is obtained by reacting chlorophosphite, {-OC10H6(μ-S)C10H6O-}PCl (1) with 2,6-pyridinedimethanol in presence of triethylamine.Treatment of 2 with aqueous solution of H2O2 or elemental sulfur resulted in the formation of bis(oxide) or bis(sulfide) derivatives, 2,6-C5H3N{CH2OP(E)(-OC10H6)(μ-S)(C10H6O-)}2 (3, E = O; 4, E = S) in quantitative yield.The 10-membered cationic chelate complex, [RuCl(η6-C10H142-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]Cl (5) is produced in the reaction between [Ru(p-cymene)(μ-Cl)(Cl)]2 and bisphosphite 2, whereas the neutral chelate complex, cis-[Rh(CO)Cl{2,6-C5H3N{CH2OP(-OC10H6(μ-S)C10H6O-)}2}-κPP] (6) is isolated in the reaction of 2 with 0.5 equiv.of [Rh(CO)2Cl]2.Compound 2 on treatment with M(COD)Cl2 (M = Pd, Pt) produce the chelate complexes, [MCl22-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (7, M = Pd;10, M = Pt).Similarly the reaction of bisphosphite 2 with Pd(COD)MeCl affords cis-[PdMe(Cl)η2-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP] (8).Treatment of 2 with [Pd(η3- C3H5)Cl]2 in the presence of AgClO4 furnish the cationic complex, [Pd(η3-C3H52-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]ClO4 (9). The binuclear complex, [Au2Cl2{2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (11) is obtained in the reaction of compound 2 with two equiv. of AuCl(SMe2), where the ligand exhibits bridged bidentate mode of coordination. All the complexes are characterized by the 1H NMR, 31P NMR, elemental analysis and mass spectroscopy data. The cationic ruthenium complex 5 is proved to be an active catalyst for the hydrogenation of styrene and α-methyl styrene.  相似文献   

8.
The palladacycle [Pd(μ-O2CMe){κ2C,N-4-MeC6H3N(Me)NO}]2 readily undergoes bridge cleavage reactions with a variety of compounds containing donor functionalities including thioamides, 8-hydroxyquinoline, thioureas, selenoureas, acetylacetone derivatives, dithiocarbamates, xanthates, as well as bidentate N-donors to afford either the monomeric, neutral Pd(II) complexes [Pd{κ2C,N-4-MeC6H3N(Me)NO}{L-L}] or the monocationic complexes [Pd{κ2C,N-4-MeC6H3N(Me)NO}(N-N)]PF6 in high yields. A series of 15 different complexes was prepared and fully characterised spectroscopically and, in some cases, by X-ray diffraction. It was also found that the dithiocarbamato complex undergoes a disproportionation reaction in solution to give the bis(cyclometallated) complex [Pd{κ2C,N-4-MeC6H3N(Me)NO}2] as well as the bis(dithiocarbamato) complex [Pd{κ2S-S2CNEt2}2].  相似文献   

9.
Triangular “NbAu2” cluster compounds have been prepared by the reaction of [Nb(η5-C5H4R)2H3] (R = H, Si(CH3)3) with gold(I) salts and the structure of [Nb{η5-C5H4Si(CH3)3}2{AuP(C6H5)3}2] PF6 has been determined by X-ray diffraction.  相似文献   

10.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

11.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

12.
A systematic series of η5-monocyclopentadienylruthenium(II) complexes with substituted thiophene nitrile ligands of general formula [Ru(η5-C5H5)(P_P)(NC{SC4H2}nNO2)][PF6] (P_P = dppe, (+)-diop; n = 1-3) has been synthesized and characterized. Spectroscopic and electrochemical data were used in order to get an insight on the molecular nonlinear optical properties of these complexes when compared to those found for the reported thiophene iron(II) and p-benzonitrile or 1,2-di-(2-thienyl)-ethene derived iron(II)/ruthenium(II) related complexes. The compound [Ru(η5-C5H5)(dppe)(NC{SC4H2}2NO2)][PF6] was also characterized by X-ray diffraction. The solid state nonlinear optical properties of the chiral compounds were also evaluated by Kurtz powder technique with a Nd:YAG laser emitting at 1064 nm.  相似文献   

13.
The reactions of the cationic complexes [CpMn(CO)2NO]+, [MeCpMn(CO)2NO]+ (Cp = η5-C5H5, MeCp = η5-C5H4CH3), [CpRe(CO)2NO]+, [CpMn(CO)(L)NO]+ (L = PPh3, PEt2Ph, AsPh3, CNMe, CNEt), {[CpMn(CO)NO]2Me2PC2H4PMe2}2+ and {CpMn(CO)NO]2Ph2PC2H4PPh2}2+ with liquid NH3 yield the neutral carbamoyl complexes CpMn(CO)(NO)CONH2, MeCpMn(CO)(NO)CONH2, CpRe(CO)(NO)CONH2, CpMn(L)(NO)CONH2 (L = PPh3, PEt2Ph, AsPh3, CNMe, CNEt), [CpMn(NO)CONH2]2Me2PC2H4PMe2 and [CpMn(NO)CONH2]2Ph2PC2H4PPh2. Properties and reactions of these new compounds are described.  相似文献   

14.
N,N-Bis(diphenylphosphino)ethylaniline compounds, [Ph2P]2N-C6H4-C2H5, with ethyl groups at the ortho- and para-positions have been synthesized. Oxidation of the aminophosphines with hydrogen peroxide, elemental sulfur and selenium gave the corresponding oxides, sulfides and selenides [Ph2P(E)]2N-C6H4-C2H5 (E = O, S, Se). Complexes [MCl2{(Ph2P)2N-C6H4-(C2H5)}] (M = Pd, Pt) and [Cu{(Ph2P)2N-C6H4-C2H5}2]PF6 were obtained by the reaction of N,N-bis(diphenylphosphino)ethylaniline with [MCl2(COD)] (M = Pd, Pt) and [Cu(MeCN)4]PF6. The new compounds were characterized by NMR, IR spectroscopy and microanalysis. In addition, representative solid-state structures of the palladium and platinum complexes were determined using single crystal X-ray diffraction analyses.  相似文献   

15.
Treatment of [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C 5H5)2] with allene in toluene at 100°C displaces diphenylacetylene and produces [Ru(CO)(η-C5H5)-{η3-C3H4Ru(CO)2(η-C5H5)}]; upon protonation a 1-methylvinyl cation [Ru2(CO)2(μ-CO){μ-C(Me)CH2}(η-C5H5)2]+ is formed which undergoes nucleophillic attack by hydride to yield the μ-dimethylcarbene complex [Ru2(CO)2-(μ-CO)(μ-CMe2)(η-C5H5)2].  相似文献   

16.
The reaction of 2,6-dimethoxypyridine-3-carboxylic acid (DMPH) with different precursors [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H4SiMe3)(η5-C5H5)Cl2], [Ti(η5-C5Me5)Cl3], SnMe3Cl and GatBu3 yielded the complexes [Ti(η5-C5H5)2(DMP-κO)2] (1), [Ti(η5-C5H4Me)2(DMP-κO)2] (2), [Ti(η5-C5H4SiMe3)(η5-C5H5)(DMP-κO)2] (3), [Ti(η5-C5Me5)(DMP-κ2O,O′)3] (4), [SnMe3(μ-DMP-κOO′)] (5), and [GatBu2(μ-DMP-κOO′)]2 (6). 1-6 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2, 3, 5 and 6 have been determined by X-ray diffraction studies. The cytotoxic activity of 1-6 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562, human malignant melanoma Fem-x and human breast carcinoma MDA-MB-361. The results of this study show a higher cytotoxicity of the tin(IV) and gallium(III) derivatives in comparison to their titanium(IV) counterparts. Furthermore, the different titanium compounds showed differences in their cytotoxicities with a higher activity of complex 4 (mono-(cyclopentadienyl) derivative) compared to that of 1-3 (bis-(cyclopentadienyl) complexes). A qualitative UV-vis study of the interactions of these complexes with DNA has also been carried out.  相似文献   

17.
Silanethione compounds, R2Si=S, have been recognized as highly reactive species. One reliable way to stabilize silanethione is its coordination to transition metal fragments to convert silanethione-coordinated transition metal complexes. Herein, we report the synthesis, structure, and reactivity of a second cationic silanethione tungsten complex [Cp*(OC)3W{S=SiR2(py)}]TFPB (R=Me ( 5 a ), Ph ( 5 b ), Cp*: η5-C5Me5, py: pyridine, and TFPB: [B{3,5-(CF3)2C6H3}4]). Complex 5 was obtained by H abstraction from the Si atom in the corresponding silylsulfanyl complex Cp*(OC)3W(SSiR2H) ( 4 ) with Ph3CTFPB, followed by the addition of pyridine. The reaction of 5 with PhNCS and PMe3 produced [Cp*(OC)3W{SSiR2N(Ph)C(PMe3)2}]TFPB (R=Me ( 6 a ), Ph ( 6 b )) via the elimination of pyridine and the addition of the 1,3-dipolar species PhNC(PMe3)2 ( A ) to the Si atom.  相似文献   

18.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

19.
The reaction of binuclear cadmium diisopropyldithiocarbamate with a solution of AuCl3 in 2 M HCl was studied. The heterogeneous reaction of gold(III) binding follows a chemisorption scenario (in combination with partial ion exchange) and yields a heteropolynuclear gold(III)-cadmium complex. The molecular and crystal structure of a solvated species of the compound, namely ([Au{S2CN(iso-C3H7)2}2]2[CdCl4] · 1/2C3H6O) n (I), was solved by X-ray crystallography. The structure of complex I contains (in the ratio 1: 1) structurally nonequivalent molecular cations [Au{S2CN(iso-C3H7)2}2]+; the differences between these cations allow them to be classified as conformational isomers (cations A and B). The specifics of the supramolecular organization of complex I consist of the alternation of layers of [Au2{S2CN(iso-C3H7)2}4]2+ binuclear cations (formed by cations A), ([Au{S2CN(iso-C3H7)2}2]+) n polymer chains (formed by cations B), and [CdCl4]2? anions. The chemisorption capacity of the precursor cadmium diisopropyldithiocarbamate as calculated from the gold(III) binding reaction is 423.5 mg Au3+ per gram of sorbent. The thermal properties of complex I were studied by simultaneous thermal analysis (STA) in order for the parameters of sorbed gold recovery to be determined. The multistep thermal destruction process involves desorption of solvating acetone molecules, thermolysis of the dithiocarbamate part of the complex and [CdCl4]2? with release of metallic gold and cadmium chloride and formation of CdS, as well as vaporization of CdCl2 and CdS. The only final product of thermal conversions is reduced metallic gold.  相似文献   

20.
Reaction of [(η-C7H7)Mo(CO)3][PF6] and [(η-C5H5)Fe(CO)2CH3CN][PF6] with ditertiary phosphine ligands afforded products of three types; the monosubstituted complexes [(Ring)M(CO)2Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1; Ring = η-C5H5, M = Fe, N = 1 and 2), the chelated complexes [(Ring)M(CO)Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1 and 2; Ring = η-C5H5, M = Fe, N = 1 and 2), and the dinuclear complex [{(η-C7H7)Mo(CO)2}2 -μ- Ph2PCH2CH2PPh2][(PF6)2]. Spectroscopic properties, including 31P NMR, are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号