首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two extremely bulky boryl/silyl-substituted amide ligands, –N{B(DipNCH)2}(SiR3) (R = Me TBoL, R = Ph PhBoL; Dip = 2,6-diisopropylphenyl) were used in the preparation of the group 12 metal halide complexes, PhBoLZnBr, {TBoLCd(μ-I)}2, TBoLHgI, and PhBoLHgI. The reduction of these, and two previously reported compounds, PhBoLZnBr(THF) and {PhBoLCd(μ-I)}2, using a magnesium(I) compound, {(MesNacnac)Mg}2 (MesNacnac = [(MesNCMe)2CH], Mes = mesityl), were carried out, leading to mixed results. In several cases these reactions led to decomposition, and deposition of the group 12 metal. However, in two instances the homobimetallic metal(I) complexes, TBoLM–MTBoL (M = Zn or Hg), were isolated and crystallographically characterized. The reduction of {PhBoLCd(μ-I)}2 afforded the known cadmium(I) complex, PhBoLCd–CdPhBoL, but also gave a very low yield of the thermally unstable complex, PhBoLCd–Mg(THF)(MesNacnac). The X-ray crystal structure of this compound reveals it to contain the first example of a Cd–Mg bond in a molecular compound.  相似文献   

2.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   

3.
Reaction of a lithium boryl, [(THF)2Li{B(DAB)}] (DAB=[(DipNCH)2]2?, Dip=2,6‐diisopropylphenyl), with a dinuclear magnesium(I) compound [{(MesNacnac)Mg}2] (MesNacnac=[HC(MeCNMes)2]?, Mes=mesityl) unexpectedly afforded a rare example of a terminal magnesium boryl species, [(MesNacnac)(THF)Mg{B(DAB)}]. Attempts to prepare the magnesium boryl via a salt metathesis reaction between the lithium boryl and a β‐diketiminato magnesium iodide compound, instead led to an intractable mixture of products. Similarly, reaction of the lithium boryl with a β‐diketiminato beryllium bromide precursor, [(DepNacnac)BeBr] (Dep=2,6‐diethylphenyl) did not give a beryllium boryl, but instead afforded an unprecedented example of a beryllium substituted diazaborole heterocycle, [{(DepNacnac)Be(4‐DAB?H)}BBr]. For sake of comparison, the same group 2 halide precursor compounds were treated with a potassium gallyl analogue of the lithium boryl, viz. [(tmeda)K{:Ga(DAB)}] (tmeda=N,N,N’,N’‐tetramethylethylenediamine), but no reactions were observed.  相似文献   

4.
The preparation and characterization of a series of magnesium(II) iodide complexes incorporating β‐diketiminate ligands of varying steric bulk and denticity, namely, [(ArNCMe)2CH]? (Ar=phenyl, (PhNacnac), mesityl (MesNacnac), or 2,6‐diisopropylphenyl (Dipp, DippNacnac)), [(DippNCtBu)2CH]? (tBuNacnac), and [(DippNCMe)(Me2NCH2CH2NCMe)CH]? (DmedaNacnac) are reported. The complexes [(PhNacnac)MgI(OEt2)], [(MesNacnac)MgI(OEt2)], [(DmedaNacnac)MgI(OEt2)], [(MesNacnac)MgI(thf)], [(DippNacnac)MgI(thf)], [(tBuNacnac)MgI], and [(tBuNacnac)MgI(DMAP)] (DMAP=4‐dimethylaminopyridine) were shown to be monomeric by X‐ray crystallography. In addition, the related β‐diketiminato beryllium and calcium iodide complexes, [(MesNacnac)BeI] and [{(DippNacnac)CaI(OEt2)}2] were prepared and crystallographically characterized. The reductions of all metal(II) iodide complexes by using various reagents were attempted. In two cases these reactions led to the magnesium(I) dimers, [(MesNacnac)MgMg(MesNacnac)] and [(tBuNacnac)MgMg(tBuNacnac)]. The reduction of a 1:1 mixture of [(DippNacnac)MgI(OEt2)] and [(MesNacnac)MgI(OEt2)] with potassium gave a low yield of the crystallographically characterized complex [(DippNacnac)Mg(μ‐H)(μ‐I)Mg(MesNacnac)]. All attempts to form beryllium(I) or calcium(I) dimers by reductions of [(MesNacnac)BeI], [{(DippNacnac)CaI(OEt2)}2], or [{(tBuNacnac)CaI(thf)}2] have so far been unsuccessful. The further reactivity of the magnesium(I) complexes [(MesNacnac)MgMg(MesNacnac)] and [(tBuNacnac)MgMg(tBuNacnac)] towards a variety of Lewis bases and unsaturated organic substrates was explored. These studies led to the complexes [(MesNacnac)Mg(L)Mg(L)(MesNacnac)] (L=THF or DMAP), [(MesNacnac)Mg(μ‐AdN6Ad)Mg(MesNacnac)] (Ad=1‐adamantyl), [(tBuNacnac)Mg(μ‐AdN6Ad)Mg(tBuNacnac)], and [(MesNacnac)Mg(μ‐tBu2N2C2O2)Mg(MesNacnac)] and revealed that, in general, the reactivity of the magnesium(I) dimers is inversely proportional to their steric bulk. The preparation and characterization of [(tBuNacnac)Mg(μ‐H)2Mg(tBuNacnac)] has shown the compound to have different structural and physical properties to [(tBuNacnac)MgMg(tBuNacnac)]. Treatment of the former with DMAP has given [(tBuNacnac)Mg(H)(DMAP)], the X‐ray crystal structure of which disclosed it to be the first structurally authenticated terminal magnesium hydride complex. Although attempts to prepare [(MesNacnac)Mg(μ‐H)2Mg(MesNacnac)] were not successful, a neutron diffraction study of the corresponding magnesium(I) complex, [(MesNacnac)MgMg(MesNacnac)] confirmed that the compound is devoid of hydride ligands.  相似文献   

5.
Reactions of a series of magnesium(I) compounds with ethylene, in the presence of an N-heterocyclic carbene (NHC), have been explored. Treating [{(MesNacnac)Mg}2] (MesNacnac=[HC(MeCNMes)2], Mes=mesityl) with an excess of ethylene in the presence of two equivalents of :C{(MeNCMe)2} (TMC) leads to the formal reductive coupling of ethylene, and formation of the 1,2-dimagnesiobutane complex, [{(MesNacnac)(TMC)Mg}2(μ-C4H8)]. In contrast, when the reaction is repeated in the presence of three equivalents of TMC, a mixture of the β-diketiminato magnesium ethyl, [(MesNacnac)(TMC)MgEt], and the NHC coordinated magnesium diamide, [(MesNacnac-H)Mg(TMC)2], results. Four related products, [(ArNacnac)(TMC)MgEt] (Ar=2,6-dimethylphenyl (Xyl) or 2,6-diisopropylphenyl (Dip)) and [(ArNacnac-H)Mg(TMC)2] (Ar=Xyl or Dip), were similarly synthesised and crystallographically characterized. Computational studies have been employed to investigate the mechanisms of the two observed reaction types, which appear dependent on the substitution pattern of the magnesium(I) compound, and the stoichiometric equivalents of TMC used in the reactions.  相似文献   

6.
Herein we report the reactions of 3,4,5,6-tetrafluoroterephthalonitrile ( 1 ) with bis(silylene) and bis(germylene) LE−EL [E=Si ( 2 ) and Ge( 3 ): L=PhC(NtBu)2)]. The reaction of LSi−SiL (L=PhC(NtBu)2) ( 2 ) with two equivalents of 1 resulted in an unprecedented oxidative addition of a C−F bond of 1 leading to disilicon(III) fluoride {L(4-C8F3N)FSi−SiF(4-C8F3N)L}( 4 ), wherein the Si−Si single bond was retained. In contrast, the reaction of LGe−GeL (L=PhC(NtBu)2) ( 3 ) with one equivalent of 1 resulted in the oxidative cleavage of Ge−Ge bond leading to L(4-C8F3N2)Ge ( 5 ) and LGeF ( 6 ). All three compounds ( 4 – 6 ) were characterized by NMR spectroscopy, EI-MS spectrometry, and elemental analysis. X-ray single-crystal structure determination of compound 4 unequivocally established that the SiIII−SiIII bond remains uncleaved.  相似文献   

7.
Reduction of a variety of extremely bulky amido Group 12 metal halide complexes, [LMX(THF)0,1] (L=amide; M=Zn, Cd, or Hg; X=halide) with a magnesium(I) dimer gave a homologous series of two‐coordinate metal(I) dimers, [L′MML′] (L′=N(Ar?)(SiMe3), Ar?=C6H2{C(H)Ph2}2Pri‐2,6,4); and the formally zinc(0) complex, [L*ZnMg(MesNacnac)] (L*=N(Ar*)(SiPri3); Ar*=C6H2{C(H)Ph2}2Me‐2,6,4; MesNacnac=[(MesNCMe)2CH]?, Mes=mesityl), which contains the first unsupported Zn? Mg bond. Two equivalents of [L*ZnMg(MesNacnac)] react with ZnBr2 or ZnBr2(tmeda) to give the mixed valence, two‐coordinate, linear tri‐zinc complex, [L*ZnIZn0ZnIL*], and the first zinc(I) halide complex, [L*ZnZnBr(tmeda)], respectively. The analogues [L*ZnMZnL*] (M=Cd or Hg), were also prepared, the Cd species contains the first Zn? Cd bond in a molecular compound. Metal–metal bonding was studied by DFT calculations.  相似文献   

8.
N-coordinated Ge(II) alkoxides L1(tBuO)Ge ( 1 ), L2(tBuO)Ge ( 2 ) and [L2(OtBu)Ge ⋅ BH3] ( 4 ) were prepared. Effect of either chelating ligands L1 and L2 or Ge→B interaction on strength of the Ge−OtBu bond was studied by insertion reaction of PhNCO. As a result, the Ge(II) carbamate L2{[(tBuO)OC](Ph)N}Ge ( 3 ) was isolated. Alcoholysis exchange reactions of 1 and 2 with substituted phenols were studied to find an easy synthetic protocol for a synthesis of functionalized Ge(II) alkoxides. Reactions yielded Ge(II) alkoxides L1,2(2-Br−C6H4O)Ge ( 5 for L1, 8 for L2), L1,2(2-MeNH−C6H4O)Ge ( 6 for L1, 9 for L2), L1,2(2-Ph2P−C6H4O)Ge ( 7 for L1, 10 for L2), L2(2-Br-3-OH−C6H3O)Ge ( 11 ) and L2(2-NC5H4O)Ge ( 12 ) containing the additional polar groups Y (Y=Br, MeNH, PPh2, OH or N). Finally, phosphane decorated Ge(II) alkoxides 7 and 10 were tested as suitable ligands in reactions with (COD)W(CO)4 and BH3. As a consequence, new complexes [(κ2- 7 )W(CO)4] ( 13 ) and [L1(2-Ph2P ⋅ {BH3}-C6H4O)Ge ⋅ {BH3}] ( 14 ) were isolated. All compounds were characterized by NMR and IR spectroscopy, and compounds 3 , 4 , 9 and 11 were additionally characterized by X-ray diffraction analysis.  相似文献   

9.
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13]3− ( 1 ) and [Nb@Ge14]3− ( 2 ), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest Nb−Ge13 contact in 1 . Low occupancies of the direct two-center two-electron (2c–2e) Nb−Ge and Ge−Ge σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.  相似文献   

10.
The syntheses of a zwitterionic base‐stabilized digermadistannacyclobutadiene and tetragermacyclobutadiene supported by amidinates and low‐valent germanium amidinate substituents are described. The reaction of the amidinate GeI dimer, [LGe:]2 ( 1 , L=PhC(NtBu)2), with two equivalents of the amidinate tin(II) chloride, [LSnCl] ( 2 ), and KC8 in tetrahydrofuran (THF) at room temperature afforded a mixture of the zwitterionic base‐stabilized digermadistannacyclobutadiene, [L2Ge2Sn2L′2] ( 3 ; L′=LGe:), and the bis(amidinate) tin(II) compound, [L2Sn:] ( 4 ). Compound 3 can also be prepared by the reaction of 1 with [LArSnCl] ( 5 , LAr=tBuC(NAr)2, Ar=2,6‐iPr2C6H3) in THF at room temperature. Moreover, the reaction of 1 with the “onio‐substituent transfer” reagent [4‐NMe2‐C5H4NSiMe3]OTf ( 8 ) in THF and 4‐(N,N‐dimethylamino)pyridine (DMAP) at room temperature afforded a mixture of the zwitterionic base‐stabilized tetragermacyclobutadiene, [L4Ge6] ( 9 ), the amidinium triflate, [PhC(NHtBu)2]OTf ( 10 ), and Me3SiSiMe3 ( 11 ). X‐ray structural data and theoretical studies show conclusively that compounds 3 and 9 have a planar and rhombic charge‐separated structure. They are also nonaromatic.  相似文献   

11.
Reaction of MoCo(CO)5(PPh3)25-C5H5) (1a) with trimethylsilylacetylene in tetrahydrofuran at 58° C yielded two acetylene bridged heterobimetallic compounds, MoCo(CO)4(PPh3){μ-HC?CSiMe3}(η5-C5H5) (4) and MoCo (CO)5{μ-HC?CSiMe3}(η5-C5H5)(5). (4) was characterized by mass, infrared, 1H, 13C and 31P NMR spectra. The X-ray crystal structure of (4) was determined:triclinic, P-1, a=8.821(1) Å, b=11.315(3) Å, c=17.029(2) Å, α=70.73(1)°, β=78 .72(1)°, γ=86.10(2)°,V =1573.4(6) Å3, Z=2, R = 3.92%,Rw = 6.06% for 4285 (F > 4σ (F)) observed reflections. The core of this molecule is a quasi-tetrahedron containing Mo, Co and two carbons of acetylene. The triphenylphosphine ligand is attached to cobalt rather than molybdenum center.  相似文献   

12.
The first isolable pyridine‐stabilized germanone has been prepared and its reactivity toward trimethylaluminum has been investigated. The germanone adduct results from a stepwise conversion that starts from 4‐dimethylaminopyridine (DMAP) and the ylide‐like N‐heterocyclic germylene LGe: (L=CH{(C?CH2)(CMe)[N(aryl)]2}, aryl=2,6‐iPr2C6H3) ( 1 ) at room temperature, and gives the corresponding germylene–pyridine adduct L(DMAP)Ge: ( 2 ) in 91 % yield. The latter reacts with N2O at room temperature to form the desired germanone complex L(DMAP)Ge?O ( 3 ) in 73 % yield. The Ge? O distance of 1.646(2) Å in 3 is the shortest hitherto reported for a Ge?O species. The reaction of 3 with trimethylaluminum leads solely to the addition product LGe(Me)O[Al(DMAP)Me2] ( 4 ). The latter results from insertion of the Ge?O subunit into an Al? Me bond of AlMe3 and concomitant migration of the DMAP ligand from germanium to the aluminum atom. Compounds 2 – 4 have been fully characterized by analytical and spectroscopic methods. Their molecular structures have been established by single‐crystal X‐ray crystallographic analysis.  相似文献   

13.
A facile, one‐pot synthesis of [Na(OC≡As)(dioxane)x ] (x =2.3–3.3) in 78 % yield is reported through the reaction of arsine gas with dimethylcarbonate in the presence of NaOt Bu and 1,4‐dioxane. It has been employed for the synthesis of the first arsaketenyl‐functionalized germylene [LGeAsCO] ( 2 , L=CH[CMeN(Dipp)]2; Dipp=2,6‐i Pr2C6H3) from the reaction with LGeCl ( 1 ). Upon exposure to ambient light, 2 undergoes CO elimination to form the 1,3‐digerma‐2,4‐diarsacyclobutadiene [L2Ge2As2] ( 3 ), which contains a symmetric Ge2As2 ring with ylide‐like Ge=As bonds. Remarkably, the CO ligand located at the arsenic center of 2 can be exchanged with PPh3 or an N‐heterocyclic carbene i PrNHC donor (i PrNHC=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) to afford the novel germylidenylarsinidene complexes [LGe‐AsPPh3] ( 4 ) and [LGe‐As(i PrNHC)] ( 5 ), respectively, demonstrating transition‐metal‐like ligand substitution at the arsinidene‐like As atom. The formation of 2 – 5 and their electronic structures have been studied by DFT calculations.  相似文献   

14.
Arylvanadium (III) Compounds. VI. Preparation and Properties of Lithium Trimesityl organyl Vanadates Trimesityl vanadium reacts with LiR (R = Ph, o-Tol, Dmop, CH3, CPh3) forming complexes Li(thf)4 VMes3R. With Li2C6H4 and Li2C2 the compounds Li2(thf) 8 V(μ-C6H4)Mes6 and Li2(thf)8V(μ-C2)Mes6 are obtained. All compounds are characterized by their thermal, magnetical, and spectral properties.  相似文献   

15.
The two‐electron reduction of a Group 14‐element(I) complex [RË?] (E=Ge, R=supporting ligand) to form a novel low‐valent dianion radical with the composition [RË:]. 2? is reported. The reaction of [LGeCl] ( 1 , L=2,6‐(CH?NAr)2C6H3, Ar=2,6‐iPr2C6H3) with excess calcium in THF at room temperature afforded the germylidenediide dianion radical complex [LGe]. 2??Ca(THF)32+ ( 2 ). The reaction proceeds through the formation of the germanium(I) radical [LGe?], which then undergoes a two‐electron reduction with calcium to form 2 . EPR spectroscopy, X‐ray crystallography, and theoretical studies show that the germanium center in 2 has two lone pairs of electrons and the radical is delocalized over the germanium‐containing heterocycle. In contrast, the magnesium derivative of the germylidendiide dianion radical is unstable and undergoes dimerization with concurrent dearomatization to form the germylidenide anion complex [C6H3‐2‐{C(H)?NAr}Ge‐Mg‐6‐{C(H)‐NAr}]2 ( 3 ).  相似文献   

16.
The reaction between [Au(o-C6H4NO2)Cl] and tetrahydrothiophene (tht) in the presence of NaClO4 give a solution (probably containing [Au(o-C6H4NO2)(tht)]) that can be used to prepare neutral [Au(o-C6H4NO2)Ln] (L = AsPh3, n = 1; L = SbPh3, n = 2; L = 1,10-phenanthroline, n = 1) or anionic [Au(o-C6H4-NO2(CN)] complexes. Treatment of [Au(o-C6H4NO2)(PPh3)] with chlorine or PhICl2 gives trans- or cis-[Au(o-C6H4NO2)Cl2(PPh3)]. Isomerizations occur when the cis-isomer is treated with concentrated solutions of chlorine or when the trans-isomer is heated.An X-ray diffraction study of [Au(o-C6H4NO2)(AsPh3)] has revealed an almost linear coordination around the gold atom (AsAuC mean value 177(2)°). The AuO distance is too long (mean value 2.80(3) Å) for intramolecular coordination.  相似文献   

17.
The reaction of [Ni(Mes2Im)2] (1) (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) with polyfluorinated arenes as well as mechanistic investigations concerning the insertion of 1 and [Ni(iPr2Im)2] (1ipr) (iPr2Im = 1,3-diisopropyl-imidazolin-2-ylidene) into the C–F bond of C6F6 is reported. The reaction of 1 with different fluoroaromatics leads to formation of the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = 4-CF3-C6F42, C6F53, 2,3,5,6-C6F4N 4, 2,3,5,6-C6F4H 5, 2,3,5-C6F3H26, 3,5-C6F2H37) in fair to good yields with the exception of the formation of the pentafluorophenyl complex 3 (less than 20%). Radical species and other diamagnetic side products were detected for the reaction of 1 with C6F6, in line with a radical pathway for the C–F bond activation step using 1. The difluoride complex trans-[Ni(Mes2Im)2(F)2] (9), the bis(aryl) complex trans-[Ni(Mes2Im)2(C6F5)2] (15), the structurally characterized nickel(i) complex trans-[NiI(Mes2Im)2(C6F5)] (11) and the metal radical trans-[NiI(Mes2Im)2(F)] (12) were identified. Complex 11, and related [NiI(Mes2Im)2(2,3,5,6-C6F4H)] (13) and [NiI(Mes2Im)2(2,3,5-C6F3H2)] (14), were synthesized independently by reaction of trans-[Ni(Mes2Im)2(F)(ArF)] with PhSiH3. Simple electron transfer from 1 to C6F6 was excluded, as the redox potentials of the reaction partners do not match and [Ni(Mes2Im)2]+, which was prepared independently, was not detected. DFT calculations were performed on the insertion of [Ni(iPr2Im)2] (1ipr) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6. For 1ipr, concerted and NHC-assisted pathways were identified as having the lowest kinetic barriers, whereas for 1, a radical mechanism with fluoride abstraction and an NHC-assisted pathway are both associated with almost the same kinetic barrier.

A combined experimental and theoretical study on the mechanism of the C–F bond activation of C6F6 with [Ni(NHC)2] is provided.  相似文献   

18.
Neutral polyfluorophenyl complexes of the type RAuL and RAuL-LAuR and anionic complexes of the type [AuR2]? (R = 2,3,5,6-C6F4H, 2,4,6-C,F3H2, 3,6-C6F2H3, 4-C6 FH4 or 3-CF3C,H4) are obtained by the reaction of ClAuL (L = PPh3, P(cyclohexyl)3, AsPh3 or tetrahydrothiophen; L-L = Ph2PCH2PPh2 or Ph2PCH2CH2PPPh2) with an organolithium derivative and/or the replacement of the initial ligands L by other mono- or bi-dentate ligands.The outcome of the reaction of [AuR2]? with [Au(PCy3)2]+ (Cy = cyclohexyl), depends on the nature of the ligand R; thus with R = 3,6-C6,F2H3 the product is [Au(PCy3)2][AuR2], while with R = 2,4,6-C6F3H2, the product is [Au(PCy3)(2,4,6-C6F3H2)].  相似文献   

19.
New Ternary Germanides: The Compounds Ln 4Zn5Ge6 ( Ln : Gd, Tm, Lu) Three new ternary germanides were prepared by heating mixtures of the elements. Gd4Zn5Ge6 (a = 4.249(3), b = 18.663(17), c = 15.423(6) Å), Tm4Zn5Ge6 (a = 4.190(1), b = 18.410(5), c = 15.105(5) Å), and Lu4Zn5Ge6 (a = 4.179(1), b = 18.368(4), c = 15.050(3) Å) are isotypic and crystallize in a new structure type (Cmc21; Z = 4), composed of edge‐ and corner‐sharing ZnGe4 tetrahedra. The rare‐earth atoms fill channels of the Zn,Ge network running along the a axis and predominantly have an octahedral coordination of Ge atoms or a pentagonal prismatic environment of Zn and Ge atoms. The ZnGe4 tetrahedra are orientated to each other so that two of six Ge atoms form pairs, while the other ones have no homonuclear contacts. This is in accord with an ionic splitting of the formula: (Ln3+)4(Zn2+)5(Ge3–)2(Ge4–)4. LMTO band structure calculations support the interpretation of bondings derived from interatomic distances. The metallic conductivity of these compounds expected from the electronic band structure was confirmed by measurements of the electrical resistance of Tm4Zn5Ge6.  相似文献   

20.
In the research of new compounds with multifunctional applications, heterobinuclear palladium (II) complexes based on organometallic dithiocarbazates (DTCZs) have been isolated. The organometallic DTCZ ligands of the general formula [{(η5-C5H4)-CH=NNHC(S)SCH3}]MLn [MLn = Re (CO)3 ( 2a ); Mn (CO)3 ( 2b ); FeCp ( 2c )] were prepared by the reaction between formyl organometallic precursors ( 1a−c ) with S-methyldithiocarbazate. Subsequently, a two-step reaction of 2a−c with: (i) K2[PdCl4] and (ii) PPh3 yielded heterobinuclear complexes [Pd{MLn(η5-C5H4)-CH=NNHC(S)SCH3}–(Cl)(PPh3)] [MLn = Re (CO)3 ( 3a ); Mn (CO)3 ( 3b ); FeCp ( 3c )]. All compounds were characterized by conventional spectroscopic techniques (infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis). In addition, the molecular structures of 2a , 2c and 3c were determined by single-crystal X-ray diffraction. The new palladium (II) complexes ( 3a−c ) were evaluated as antiproliferative agents against non-small cell lung cancer cells (H1299 cells). Complexes 3a and 3b containing cyrhetrenyl- and cymantrenyl-DTCZ ligands, respectively, were more active than their ferrocenyl analogue 3c . The activity was associated with the electron-withdrawing properties of the (η5-C5H4)M (CO)3 moieties and their better lipophilicity than that of the ferrocenyl analogue. In addition, we studied the capacity of metalloligands ( 2a−c ) and palladium (II) complexes ( 3a−c ) to remove methylene blue in water under UV–visible light irradiation. The results established that the complexes showed moderate efficiency and were less active than their corresponding free ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号