首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
周立新  吴立明  李奕  李俊 《化学学报》1999,57(10):1107-1113
在RHF/6-311G^*^*水平优化得到1,2-二硒方酸(3,4-二羟基-3-环丁烯-1,2-二硒酮)三种平面构象异构体的平衡几何构型。进一步用MP2(full)/6-311G^*//RHF/6-311G^*^*方法计算三种异构体的单点能量,发现ZZ型异构体是能量最低构象,且ZZ和ZE型能量非常接近。用优化的最稳定构象ZZ型异构体在RHF/6-311G^*^*//RHF/6-311G^*^*,RHF/6-311+G^*^*//RHF/6-311+G^*^*,MP2(full)/6-311+G^*^*//RHF/6-311+G^*^*和B3LYP/6-311+G^*^*//B3LYP/6-311+G^*^*水平计算其气相酸性[ΔGⅲ~(~2~9~8~K~)]和同键反应芳香性稳定化能(HASE)。用基团加和法(groupincrementapproach)在RHF/6-311+G^*^*//RHF/6-311+G^*^*和B3LYP/6-311+G^*^*//B3LYP/6-311+G^*^*水平计算其磁化率增量(Λ)。计算结果指出标题化合物的键长发生了平均化,同键反应芳香性稳定化能和磁化率增量均为负值,表明它具有芳香性,实现了标题化合物芳香性的几何、能量和磁性的判定。  相似文献   

2.
用从头算方法HF/6-31G^*^*和密度函方法B3LYP/6-31G^*^*,对Si~2Cl~6分子的平衡几何构型进行优化,优化的结果与实验结果吻合得较好.并用上述两种不同的方法计算Si~2Cl~6分子的内旋转能垒,结果分别为8.786和6.694kJ/mol,其中DFT方法的计算结果与实验结果4.18kJ/mol吻合得较好.对Si~2Cl~6分子的振动基频进行计算.用HF/6-31G^*^*SQM力场所计算的频率理论值与实验值的平均误差为7.3cm^-^1,用B3LYP/6-31G^*^*未标度的力场所计算的频率理论值与实验值的平均误差为6.0cm^-^1.该密度泛函方法(B3LYP/~6-31G^*^*)的理论计算值比用HF/6-31G^*^*标度后的SQM力场计算的频率与实验值(除Si--Si键扭转振动基频之外的11条振动基频)吻合得更好.并给出了Si--Si键扭转振动基频的预测值。  相似文献   

3.
用从头算方法HF/6-31G^*^*和密度函方法B3LYP/6-31G^*^*,对Si~2Cl~6分子的平衡几何构型进行优化,优化的结果与实验结果吻合得较好.并用上述两种不同的方法计算Si~2Cl~6分子的内旋转能垒,结果分别为8.786和6.694kJ/mol,其中DFT方法的计算结果与实验结果4.18kJ/mol吻合得较好.对Si~2Cl~6分子的振动基频进行计算.用HF/6-31G^*^*SQM力场所计算的频率理论值与实验值的平均误差为7.3cm^-^1,用B3LYP/6-31G^*^*未标度的力场所计算的频率理论值与实验值的平均误差为6.0cm^-^1.该密度泛函方法(B3LYP/~6-31G^*^*)的理论计算值比用HF/6-31G^*^*标度后的SQM力场计算的频率与实验值(除Si--Si键扭转振动基频之外的11条振动基频)吻合得更好.并给出了Si--Si键扭转振动基频的预测值。  相似文献   

4.
张士国  杨频 《结构化学》2004,23(6):581-586
对胞嘧啶-BH3复合物分别用B3LYP/6-31G和MP2/6-31G进行理论计算以预测该复合物的构型及稳定化能, 得到了5种构型。对各构型进行了振动频率分析和自然键轨道分析。结果表明, B与N和O直接相连的构型比较稳定, 其稳定化能为137.4和120.0 kJ/mol (MP2/6-31G)。其余的构型靠π-p作用而形成, 其稳定性较前两者弱。各构型的稳定化能与电荷转移量有良好的相关性。复合物的形成, 使其红外光谱均有不同程度的红移, 幅度与复合物的稳定性相关。  相似文献   

5.
薛英  郭勇  徐学军  谢代前  鄢国森 《化学学报》2000,58(10):1254-1258
用多种密度泛函理论(DFT)方法(BLYP/6-31G^*^*,B3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)对吲哚分子的平衡几何构型进行了优化。在优化构型的基础上计算了吲哚分子的谐力场、振动基频和红外光谱强度。计算得到的振动频率与实验值比较平均偏差对四种计算方法(BLYP/6-31G^*^*,P3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)分别为16.3,40.5,45.1和26.4cm^-^1。BLYP/6-31G^*^*理论力场被用于吲哚分子的简正坐标分析计算中。根据振动率的势能分布(PEDs)对此分子的振动基频进行了理论归属。  相似文献   

6.
四唑互变异构反应的密度泛函理论(DFT)研究   总被引:8,自引:0,他引:8  
肖鹤鸣  陈兆旭 《化学学报》1999,57(11):1206-1212
运用11种密度泛函理论方法对四唑互变异构反应进行了计算研究。结果表明,B3LYP-DFT法与从头算的优化几何和能量最为吻合;在6-31^*基组下B3LYP计算的IR频率与MP2/6-311G^*^*计算结果相差很小;用未经校正的B3LYP计算频率求得的产物(2H-四唑)的热力学性质与实测结果也完全一致;由此推荐B3LYP-DFT法适合于对四唑化合物作系统研究。  相似文献   

7.
贡雪东  肖鹤鸣 《化学学报》1999,57(7):696-705
用密度函数理论(DFT)的BLYP和B3LYP方法,取6-31G,6-31G^*,6-31G^*^*,6-311G,6-311G^*和6-311G^*^*六种基组,对硝酸甲酯和硝酸乙酯的几何构型和红外振动频率进行了计算研究.结果表明,B3LYP方法在采用极化基组(6-31G^*,6-31G^*^*,6-311G^*和6-311G^*^*)时计算得到的结果均较好,适用于硝酸酯类化合物的研究.而BLYP方法无论采用何种基组均不适用;运用校正后的B3LYP/6-31G^*频率(校正因子0.975)计算得到的热力学性质(C^o~p,H^o和S^o)与实验结果较吻合。  相似文献   

8.
用密度函数理论(DFT)的BLYP和B3LYP方法,取6-31G,6-31G^*,6-31G^*^*,6-311G,6-311G^*和6-311G^*^*六种基组,对硝酸甲酯和硝酸乙酯的几何构型和红外振动频率进行了计算研究.结果表明,B3LYP方法在采用极化基组(6-31G^*,6-31G^*^*,6-311G^*和6-311G^*^*)时计算得到的结果均较好,适用于硝酸酯类化合物的研究.而BLYP方法无论采用何种基组均不适用;运用校正后的B3LYP/6-31G^*频率(校正因子0.975)计算得到的热力学性质(C^o~p,H^o和S^o)与实验结果较吻合。  相似文献   

9.
运用密度泛函方法,比较不同水平的基组(HF/6-311+G^*;B3LYP/6-31G^*;B3LYP/6-311+G^*)对具有D~6~h对称性的C~3~6分子进行构型优化的结果,并分析其几何结构、电子结构、稳定性等性质;采用基组B3LYP/6-31G^*对H@C~3~6,Li@C~3~6,Na@C~3~6,K@C~3~6分子进行构型全优化,分析了不同内嵌原子对其几何结构、电子结构、稳定性等性质的影响;首次在B3LYP/6-311+G^*水平上,对C~3~6H~6,C~3~6H~1~2,X@C~3~6(X=H,Li,Na,K)几何构型及电子结构进行研究并得到其稳定性规律。  相似文献   

10.
二重态下反应HCCO(2A″)+O2(3∑-g)的势能面理论研究   总被引:1,自引:0,他引:1  
丁元庆  王超  方德彩  刘若庄 《化学学报》2004,62(15):1373-1378,FJ01
选用cc-p VDZ,cc-pVTZ基组用密度泛函方法(B3LYP)研究了基态羰游基自由基HCCO(2A″)与基态氧分子O2(3∑g^-)反应的机理,在B3LYP/cc-pVDZ优化的几何构型基础上,使用CCSD(T)/cc-pVDZ方法进行了单点能校正.此外,还采用基于B3LYP/6-31G^*几何构型及振动频率的G383理论对所有驻点进行了更精确的能量计算.结果表明,只需越过6.31kJ/mol或6.23kJ/mol的位垒,氧分子中的一个氧原子便很容易地与羰游基中紧邻氢原子的碳原子相结合得到两个总能较比反应物低88.11kJ/mol或84.85kJ/mol的开环中间体,此二开环中间体很容易发生C-C-O-C环合或C-O-O环合从而转化为更稳定的环式异构体(总能较比反应物低149.81kJ/mol和54.97kJ/mol),转化位垒分别为8.73kJ/mol和86.44kJ/mol,该二环式异构体均很容易分解为反应的最终产物H CO CO2,其它可能的通道也在本文中有所探讨。  相似文献   

11.
Geometries and combination energies are predicated at B3LYP / 6-31G(d)and MP2 / 6-31G(d)level for thymine-BH3 complexes and 5 geometries have been obtained. Then single point energy calculations using larger basis sets(6-311 + G(2df)and aug-cc-pVDZ)and vibrational analysis and natural bond orbital analysis are carried out on the 5 optimized conformers. The outcome indicates that the conformers with the boron atom combined with O directly are relatively stable ones,(a)and(b),with the combination energies of 90. 4 and 88. 0 kJ / mol (B3LYP / 6-31G(d),BSSE corrected). The fact is that the nitrogen atom offers electron to the empty atomic orbital of boron which produces the conformers(c)and(d). Only one conformer is found which is formed because two carbon atoms offer π electron to the empty orbital of boron. The charge transference exists in all the conformers. The combination energies have a good line relation with their charge transference. The calculated results show that when the complex forms their IR spectrum moved to the red side and the frequency shifts are relative to the stabilities of the complexes.  相似文献   

12.
The conformers of cycloheptane through cyclodecane have been examined at the B3LYP/6-311+G* and MP2/6-311+G* theoretical levels, with some additional calculations at the CCD/6-311+G* and CCSD(T)/6-311++G** levels. With cyclooctane, B3LYP predicts that the boat-chair and crown conformers have similar energies, whereas MP2 and CCSD(T) predict that the crown conformer is 2 kcal/mol higher in energy. The latter is in agreement with the electron diffraction data. With cyclononane, B3LYP predicts that two of the higher-energy conformers found in molecular mechanics calculations should convert to one of the lower-energy conformers. However, MP2/6-311+G* optimizations find them to be true minima on the potential energy surface. B3LYP systematically predicts larger C-C-C bond angles for these compounds than either MP2 or CCD. The results of molecular mechanics MM4 calculations are generally in good agreement with those obtained using MP2.  相似文献   

13.
The molecular structures of the diphosphines P(2)[CH(SiH(3))(2)](4), P(2)[C(SiH(3))(3)](4), P(2)[SiH(CH(3))(2)](4), and P(2)[Si(CH(3))(3)](4) and the corresponding radicals P[CH(SiH(3))(2)](2), P[C(SiH(3))(3)](2), P[SiH(CH(3))(2)](2), and P[Si(CH(3))(3)](2) were predicted by theoretical quantum chemical calculations at the HF/3-21G*, B3LYP/3-21G*, and MP2/6-31+G* levels. The conformational analyses of all structures found the gauche conformers of the diphosphines with C(2) symmetry to be the most stable. The most stable conformers of the phosphido radicals were also found to possess C(2) symmetry. The structural changes upon dissociation allow the release of some of the energy stored in the substituents and therefore contribute to the decrease of the P-P bond dissociation energy. The P-P bond dissociation enthalpies at 298 K in the compounds studied were calculated to vary from -11.4 kJ mol(-1) (P(2)[C(SiH(3))(3)](4)) to 179.0 kJ mol(-1) (P(2)[SiH(CH(3))(2)](4)) at the B3LYP/3-21G* level. The MP2/6-31+G* calculations predict them to be in the range of 52.8-207.9 kJ mol(-1). All the values are corrected for basis set superposition error. The P-P bond energy defined by applying a mechanical analogy of the flexible substituents connected by a spring shows less variation, between 191.3 and 222.6 kJ mol(-1) at the B3LYP/3-21G level and between 225.6 and 290.4 kJ mol(-1) at the MP2/6-31+G* level. Its average value can be used to estimate bond dissociation energies from the energetics of structural relaxation.  相似文献   

14.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

15.
The potential energy surface of methyl beta-D-arabinofuranoside (3) has been studied by ab initio molecular orbital (HF/6-31G) and density functional theory (B3LYP/6-31G) calculations via minimization of the 10 possible envelope conformers. The partial potential energy surface identified that the global minimum and lowest energy northern conformer was E(2). In the HF calculations, (2)E was the most stable southern conformer, while the density functional theory methods identified (4)E as the local minimum in this hemisphere. Additional calculations at higher levels of theory showed that the B3LYP-derived energies of many of the envelope conformers of 3 are dependent upon the basis set used. It has also been demonstrated that B3LYP/6-31+G//B3LYP/6-31G single point energies are essentially the same as those obtained from full geometry optimizations at the B3LYP/6-31+G level. The northern and southern minima of the B3LYP/6-31+G surface are, respectively, the E(2) and (2)E conformers. The B3LYP/6-31G geometries were used to study the relationship between ring conformation and various structural parameters including bond angles, dihedral angles, bond lengths, and interatomic distances.  相似文献   

16.
Infrared and Raman spectra (3500-60 cm(-1)) of gas and/or liquid and solid 1-bromo-1-silacyclopentane (c-C4H8SiBrH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/6-311+G(2df,2pd) predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but approximately 900 cm(-1) (5.98 kJ/mol) lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predict slightly lower energies for the two envelope forms and considerably lower energy for the planar form compared to the MP2 predictions. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

17.
Ab initio molecular orbital theory with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-31+G(d,p), 6-31+G(2d,p), 6-311G(d), 6-311G(d,p), and 6-311+G(2d,p) basis sets and density functional theory (BLYP, B3LYP, B3P86, B3PW91) have been used to locate transition states involved in the conformational interconversions of 1,4-dithiacyclohexane (1,4-dithiane) and to calculate the geometry optimized structures, relative energies, enthalpies, entropies, and free energies of the chair and twist conformers. In the chair and 1,4-twist conformers the C-Hax and C-Heq bond lengths are equal at each carbon, which suggest an absence of stereoelectronic hyperconjugative interactions involving carbon-hydrogen bonds. The 1,4-boat transition state structure was 9.53 to 10.5 kcal/mol higher in energy than the chair conformer and 4.75 to 5.82 kcal/mol higher in energy than the 1,4-twist conformer. Intrinsic reaction coordinate (IRC) calculations showed that the 1,4-boat transition state structure was the energy maximum in the interconversion of the enantiomers of the 1,4-twist conformer. The energy difference between the chair conformer and the 1,4-twist conformer was 4.85 kcal/mol and the chair-1,4-twist free energy difference (deltaG degrees (c-t)) was 4.93 kcal/mol at 298.15 K. Intrinsic reaction coordinate (IRC) calculations connected the transition state between the chair conformer and the 1,4-twist conformer. This transition state is 11.7 kcal/mol higher in energy than the chair conformer. The effects of basis sets on the 1,4-dithiane calculations and the relative energies of saturated and unsaturated six-membered dithianes and dioxanes are also discussed.  相似文献   

18.
Quantum chemical calculations of the structures and thermodynamics of homolytic dissociation of the central P-P and N-N bonds in tetrakis(disyl)diphosphine and tetrakis(di-tert-butylsilyl)hydrazine have been performed. The theory predicted negative standard enthalpies for homolytic bond dissociation in both cases, -71.0 and -108.4 kJ mol(-1) for the diphosphine and hydrazine, respectively, using the ONIOM (MP2/6-31+G*:B3LYP/3-21G*) level. The dissociation is accompanied by considerable structural changes in the radicals as compared to the corresponding fragments of the parent molecules, resulting in low dissociation enthalpies. The most pronounced changes in both radicals are the relaxation of bond angles in the substituents and a conformational change in the orientation of the substituent groups. In addition, the bis(di-tert-butylsilyl)aminyl radical displays a considerable increase in Si-N-Si angle and shortening of the Si-N bonds upon dissociation. These changes are not associated with any appreciable delocalisation of the lone electron, as the spin density is found from the B3LYP/3-21G* calculations to be largely concentrated on the nitrogen atom. It has been also shown that although the dissociation energies are low for both compounds, the intrinsic energies of the central bonds are still high, 140.6 kJ mol(-1) for the P-P bond in tetrakis(disyl)diphosphine and 490.6 kJ mol(-1) for the N-N bond in tetrakis(di-tert-butylsilyl)hydrazine, using the ONIOM method. The calculations predict that the dissociation of tetrakis(disyl)diphosphine would have negative free energy even without taking relaxation of the fragments into account, while the full potential of releasing about 306 kJ mol(-1) of energy stored in the ligands of tetrakis(di-tert-butylsilyl)hydrazine is only fully realised upon a considerable separation of the fragments.  相似文献   

19.
Geometries and binding energies are predicted at B3LYP/6-311+G* level for the adenine–BX3 (X=F,Cl) systems and four conformers with no imaginary frequencies have been obtained for both adenine–BF3 and adenine–BCl3, respectively, and single energy calculations using much larger basis sets (6-311+G(2df,p)) and aug-cc-pVDZ were carried out as well. The most stable conformer is BF3 or BCl3 connected to N3 of adenine and with the stabilization energy of 22.55 or 20.59 kcal/mol at B3LYP/6-311+G* level (BSSE corrected). The analyses for the combining interaction between BX3 and adenine with natural bond orbital method (NBO) and the atom-in-molecules theory (AIM) have been performed. The results indicate that all the conformers were formed with σ–p type interactions between adenine and BX3, in which pyridine-type nitrogen or nitrogen atom of amino group offers its lone pair electron to the empty p orbital of boron atom and the concomitances of charge transference from adenine to BX3 were occurred. Frequency analysis suggested that the stretching vibration of BX3 underwent a red shift in complexes. Adenine–BF3 complex was more stable than adenine–BCl3 although the distance of B–N is shorter in the later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号