首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We consider the traveling tournament problem, which is a well-known benchmark problem in tournament timetabling. It consists of designing a schedule for a sports league of n teams such that the total traveling costs of the teams are minimized. The most important variant of the traveling tournament problem imposes restrictions on the number of consecutive home games or away games a team may have. We consider the case where at most two consecutive home games or away games are allowed. We show that the well-known independent lower bound for this case cannot be reached and present two approximation algorithms for the problem. The first algorithm has an approximation ratio of ${3/2+\frac{6}{n-4}}$ in the case that n/2 is odd, and of ${3/2+\frac{5}{n-1}}$ in the case that n/2 is even. Furthermore, we show that this algorithm is applicable to real world problems as it yields close to optimal tournaments for many standard benchmark instances. The second algorithm we propose is only suitable for the case that n/2 is even and n????12, and achieves an approximation ratio of 1?+?16/n in this case, which makes it the first ${1+\mathcal{O}(1/n)}$ -approximation for the problem.  相似文献   

2.
A 2.75-approximation algorithm is proposed for the unconstrained traveling tournament problem, which is a variant of the traveling tournament problem. For the unconstrained traveling tournament problem, this is the first proposal of an approximation algorithm with a constant approximation ratio. In addition, the proposed algorithm yields a solution that meets both the no-repeater and mirrored constraints. Computational experiments show that the algorithm generates solutions of good quality.  相似文献   

3.
We present a polynomial algorithm with time complexity O(n 5) and approximation ratio 4/3 (plus some additive constant) for the minimum 2-peripatetic salesman problem in a complete n-vertex graph with different weight functions valued 1 and 2 (abbreviated to as 2-PSP(1, 2)-min-2w). This result improves the available algorithm for this problem with approximation ratio 11/7.  相似文献   

4.
In this paper we propose an approximation for the Traveling Tournament Problem which is the problem of designing a schedule for a sports league consisting of a set of teams T such that the total traveling costs of the teams are minimized. It is not allowed for any team to have more than k home-games or k away-games in a row. We propose an algorithm which approximates the optimal solution by a factor of 2+2k/n+k/(n?1)+3/n+3/(2?k) which is not more than 5.875 for any choice of k≥4 and n≥6. This is the first constant factor approximation for k>3. We furthermore show that this algorithm is also applicable to real-world problems as it produces solutions of high quality in a very short amount of time. It was able to find solutions for a number of well known benchmark instances which are even better than the previously known ones.  相似文献   

5.
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time nO(1/e2){n^{O(1/\varepsilon^2)}}. This improves on a previous PTAS with nO(1/e4){n^{O(1/\varepsilon^4)}} running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n 2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).  相似文献   

6.
The best approximation algorithm for Max Cut in graphs of maximum degree 3 uses semidefinite programming, has approximation ratio 0.9326, and its running time is Θ(n3.5logn); but the best combinatorial algorithms have approximation ratio 4/5 only, achieved in O(n2) time [J.A. Bondy, S.C. Locke, J. Graph Theory 10 (1986) 477–504; E. Halperin, et al., J. Algorithms 53 (2004) 169–185]. Here we present an improved combinatorial approximation, which is a 5/6-approximation algorithm that runs in O(n2) time, perhaps improvable even to O(n). Our main tool is a new type of vertex decomposition for graphs of maximum degree 3.  相似文献   

7.
We present randomized approximation algorithms for multi-criteria traveling salesman problems (TSP), where some objective functions should be minimized while others should be maximized. For the symmetric multi-criteria TSP (STSP), we present an algorithm that computes (2/3,3+ε)-approximate Pareto curves. Here, the first parameter is the approximation ratio for the objectives that should be maximized, and the second parameter is the ratio for the objectives that should be minimized. For the asymmetric multi-criteria TSP (ATSP), we obtain an approximation performance of (1/2,log2n+ε).  相似文献   

8.
We propose a quasi-greedy algorithm for approximating the classical uncapacitated 2-level facility location problem (2-LFLP). Our algorithm, unlike the standard greedy algorithm, selects a sub-optimal candidate at each step. It also relates the minimization 2-LFLP problem, in an interesting way, to the maximization version of the single level facility location problem. Another feature of our algorithm is that it combines the technique of randomized rounding with that of dual fitting. This new approach enables us to approximate the metric 2-LFLP in polynomial time with a ratio of 1.77, a significant improvement on the previously known approximation ratios. Moreover, our approach results in a local improvement procedure for the 2-LFLP, which is useful in improving the approximation guarantees for several other multi-level facility location problems. An additional result of our approach is an O(ln (n))-approximation algorithm for the non-metric 2-LFLP, where n is the number of clients. This is the first non-trivial approximation for a non-metric multi-level facility location problem. An extended abstract of this paper appeared in the Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), January 2004.  相似文献   

9.
10.
This paper studies a min-max location-routing problem, which aims to determine both the home depots and the tours for a set of vehicles to service all the customers in a given weighted graph, so that the maximum working time of the vehicles is minimized. The min-max objective is motivated by the needs of balancing or fairness in vehicle routing applications. We have proved that unless NP=P, it is impossible for the problem to have an approximation algorithm that achieves an approximation ratio of less than 4/3. Thus, we have developed the first constant ratio approximation algorithm for the problem. Moreover, we have developed new approximation algorithms for several variants, which improve the existing best approximation ratios in the previous literature.  相似文献   

11.
We propose an approximation algorithm for, the general max-min resource sharing problem with M nonnegative concave constraints on a convex set B. The algorithm is based on a Lagrangian decomposition method and it uses a c-approximation algorithm (called approximate block solver) for a simpler maximization problem over the convex set B. We show that our algorithm achieves within iterations or calls to the approximate block solver a solution for the general max-min resource sharing problem with approximation ratio The algorithm is faster and simpler than the previous known approximation algorithms for the problem [12, 13] Research of the author was supported in part by EU Thematic Network APPOL, Approximation and Online Algorithms, IST-2001-30012, by EU Project CRESCCO, Critical Resource Sharing for Cooperation in Complex Systems, IST-2001-33135 and by DFG Project, Entwicklung und Analyse von Approximativen Algorithmen für Gemischte und Verallgemeinerte Packungs- und überdeckungsprobleme, JA 612/10-1. Part of this work was done while visiting the Department of Computer Science at ETH Zürich. An extended abstract of this paper appeared in SWAT 2004, Scandinavian Workshop on Algorithm Theory, LNCS 3111, 311–322.  相似文献   

12.
Given a tour visitingn points in a metric space, thelatency of one of these pointsp is the distance traveled in the tour before reachingp. Theminimum latency problem (MLP) asks for a tour passing throughn given points for which the total latency of then points is minimum; in effect, we are seeking the tour with minimum average arrival time. This problem has been studied in the operations research literature, where it has also been termed the delivery-man problem and the traveling repairman problem. The approximability of the MLP was first considered by Sahni and Gonzalez in 1976; however, unlike the classical traveling salesman problem (TSP), it is not easy to give any constant-factor approximation algorithm for the MLP. Recently, Blum et al. (A. Blum, P. Chalasani, D. Coppersimith, W. Pulleyblank, P. Raghavan, M. Sudan, Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp. 163–171) gave the first such algorithm, obtaining an approximation ratio of 144. In this work, we develop an algorithm which improves this ratio to 21.55; moreover, combining our algorithm with a recent result of Garg (N. Garg, Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, 1996, pp. 302–309) provides an approximation ratio of 10.78. The development of our algorithm involves a number of techniques that seem to be of interest from the perspective of the TSP and its variants more generally. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Supported by NSF contract 9302476-CCR and an NEC research grant.Author supported by an ONR Graduate Fellowship.  相似文献   

13.
An approximation algorithm for sorting by reversals and transpositions   总被引:1,自引:0,他引:1  
Genome rearrangement algorithms are powerful tools to analyze gene orders in molecular evolution. Analysis of genomes evolving by reversals and transpositions leads to a combinatorial problem of sorting by reversals and transpositions, the problem of finding a shortest sequence of reversals and transpositions that sorts one genome into the other. In this paper we present a 2k-approximation algorithm for sorting by reversals and transpositions for unsigned permutations where k is the approximation ratio of the algorithm used for cycle decomposition. For the best known value of k our approximation ratio becomes 2.8386+δ for any δ>0. We also derive a lower bound on reversal and transposition distance of an unsigned permutation.  相似文献   

14.
Given a planar point setS, a triangulation ofS is a maximal set of non-intersecting line segments connecting the points. The minimum weight triangulation problem is to find a triangulation ofS such that the sum of the lengths of the line segments in it is the smallest. No polynomial time algorithm is known to produce the optimal or even a constant approximation of the optimal solution, and it is also unknown whether the problem is NP-hard. In this paper, we propose two improved heuristics, which triangulate a set ofn points in a plane inO(n 3) time and never do worse than the minimum spanning tree triangulation algorithm given by Lingas and the greedy spanning tree triangulation algorithm given by Heath and Pemmaraju. These two algorithms both produce an optimal triangulation if the points are the vertices of a convex polygon, and also do the same in some special cases.  相似文献   

15.
We study combinatorial and algorithmic questions around minimal feedback vertex sets (FVS) in tournament graphs. On the combinatorial side, we derive upper and lower bounds on the maximum number of minimal FVSs in an n‐vertex tournament. We prove that every tournament on n vertices has at most 1.6740n minimal FVSs, and that there is an infinite family of tournaments, all having at least 1.5448n minimal FVSs. This improves and extends the bounds of Moon (1971). On the algorithmic side, we design the first polynomial space algorithm that enumerates the minimal FVSs of a tournament with polynomial delay. The combination of our results yields the fastest known algorithm for finding a minimum‐sized FVS in a tournament.  相似文献   

16.
We consider the max-vertex-cover (MVC) problem, i.e., find k vertices from an undirected and edge-weighted graph G=(V,E), where |V|=nk, such that the total edge weight covered by the k vertices is maximized. There is a 3/4-approximation algorithm for MVC, based on a linear programming relaxation. We show that the guaranteed ratio can be improved by a simple greedy algorithm for k>(3/4)n, and a simple randomized algorithm for k>(1/2)n. Furthermore, we study a semidefinite programming (SDP) relaxation based approximation algorithms for MVC. We show that, for a range of k, our SDP-based algorithm achieves the best performance guarantee among the four types of algorithms mentioned in this paper.  相似文献   

17.
We present a simple 3-approximation algorithm for the feedback vertex set problem in a bipartite tournament, improving on the approximation ratio of 3.5 achieved by the best previous algorithms.  相似文献   

18.
19.
We develop improved approximation algorithms for two NP-hard problems: the dense-n/2-subgraph and table compression. Based on SDP relaxation and advanced rounding techniques, we first propose 0.5982 and 0.5970-approximation algorithms respectively for the dense-2-subgraph problem (DSP) and the table compression problem (TCP). Then we improve these bounds to 0.6243 and 0.6708 respectively for DSP and TCP by adding triangle inequalities to strengthen the SDP relaxation. The results for TCP beat the 0.5 bound of a simple greedy algorithm on this problem, and hence answer an open question of Anderson in an affirmative way.  相似文献   

20.
In this paper, we introduce the problem of computing a minimum edge ranking spanning tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its worst case performance ratio where n is the number of vertices in G and Δ* is the maximum degree of a spanning tree whose maximum degree is minimum. Although the approximation algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号