首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The magnetohydrodynamic(MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated.The governing partial differential equations are converted into the ordinary differential equations by suitable transformations.The transformed equations are solved by the homotopy analysis method(HAM).The expressions for square residual errors are defined,and the optimal values of convergencecontrol parameters are selected.The dimensionless velocity and temperature fields are examined for various dimensionless parameters.The skin friction coefficient and the Nusselt number are tabulated to analyze the effects of dimensionless parameters.  相似文献   

2.
A comprehensive study of magneto hydrodynamics two‐dimensional stagnation flow with heat transfer characteristics towards a heated shrinking sheet immersed in an electrically conducting incompressible micropolar fluid in the presence of a transverse magnetic field is analyzed numerically. The governing continuity, momentum, angular momentum and heat equations together with the associated boundary conditions are first reduced to a set of self similar nonlinear ordinary differential equations using a similarity transformation and are then solved by a method based on finite difference discretization. Some important features of the flow and heat transfer in terms of normal and streamwise velocities, microrotation and temperature distributions for different values of the governing parameters are analyzed, discussed and presented through tables and graphs. The results indicate that the reverse flow caused due to shrinking of the sheet can be stopped by applying a strong magnetic field. The magnetic field enhances the shear stresses and decreases the thermal boundary layer thickness. The heat loss per unit area from the sheet decreases with an increase in the shrinking parameter. Micropolar fluids exhibit reduction in shear stresses and heat transfer rate as compared with Newtonian fluids, which may be beneficial in the flow and thermal control of polymeric processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.  相似文献   

4.
In this paper, the steady flow and heat transfer of a magnetohydrodynamic fluid is studied. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field and occupies the porous space in annular pipe. The governing nonlinear equations are modeled by introducing the modified Darcy's law obeying the Sisko model. The system is solved using the homotopy analysis method (HAM), which yields analytical solutions in the form of a rapidly convergent infinite series. Also, HAM is used to obtain analytical solutions of the problem for noninteger values of the power index. The resulting problem for velocity field is then numerically solved using an iterative method to show the accuracy of the analytic solutions. The obtained solutions for the velocity and temperature fields are graphically sketched and the salient features of these solutions are discussed for various values of the power index parameter. We also present a comparison between Sisko and Newtonian fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A study is presented for magnetohydrodynamics (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar model introduced by Eringen is used to describe the working fluid. The transformed self similar ordinary differential equations together with the associated boundary conditions are solved numerically by an algorithm based on quasi-linearization and multilevel discretization. The effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigations may be beneficial in the flow and thermal control of polymeric processing.  相似文献   

6.
The unsteady,laminar,incompressible,and two-dimensional flow of a micropolar fluid between two orthogonally moving porous coaxial disks is considered.The extension of von Karman’s similarity transformations is used to reduce the governing partial differential equations(PDEs) to a set of non-linear coupled ordinary differential equations(ODEs) in the dimensionless form.The analytical solutions are obtained by employing the homotopy analysis method(HAM).The effects of various physical parameters such as the expansion ratio and the permeability Reynolds number on the velocity fields are discussed in detail.  相似文献   

7.
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.  相似文献   

8.
Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.  相似文献   

9.
Two‐dimensional steady, laminar, and incompressible flow of a micropolar fluid in a channel with no‐slip at one wall and constant uniform injection through the other wall is considered for different values of the Reynolds number R. The main flow stream is superimposed by constant injection velocity at the porous wall. The micropolar model introduced by Eringen is used to describe the working fluid. An extension of Berman's similarity transformations is used to reduce governing equations to a set of nonlinear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. It has been found that the magnitude of shear stress increases strictly at the impermeable wall whereas it decreases steadily at the permeable wall, by increasing the injection velocity. The maximum value of streamwise velocity and that of the microrotation both increase with increasing the magnitude of R. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solution of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically.  相似文献   

11.
Exact solutions for an incompressible, viscoelastic, electrically conducting MHD aligned fluid are obtained for velocity components and temperature profiles. Lie Group method is applied to obtain the solution and the symmetries used are of translational type.The English text was polished by Keren Wang and Yunming Chen.  相似文献   

12.
This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particular cases of a constant and a harmonically oscillating pressure gradient are then examined and some numerical results are illustrated graphically.  相似文献   

13.
The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson’s extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.  相似文献   

14.
The aim of this paper is to study the thermal radiation effects on the flow and heat transfer of an unsteady magnetohydrodynamic (MHD) micropolar fluid over a vertical heated nonisothermal stretching surface in the presence of a strong nonuniform magnetic field. The symmetries of the governing partial differential equations are de- termined by the two-parameter group method. One of the resulting systems of reduced nonlinear ordinary differential equations are solved numerically by the Chebyshev spec- tral method. The effects of various parameters on the velocity, the angular velocity, and the temperature profiles as well as the skin-friction coefficient, the wall couple stress co- efficient, and the Nusselt number are studied.  相似文献   

15.
The time periodic electroosmotic flow of an incompressible micropolar fluid between two infinitely extended microparallel plates is studied.The analytical solutions of the velocity and microrotation are derived under the Debye-H(u|¨)ckel approximation.The effects of the related dimensionless parameters,e.g.,the micropolar parameter,the frequency,the electrokinetic width,and the wall zeta potential ratio of the upper plate to the lower plate,on the electroosmotic velocity and microrotation are investigated.The results show that the amplitudes of the velocity and the volume flow rate will drop to zero when the micropolar parameter increases from 0 to 1.The effects of the electrokinetic width and the frequency on the velocity of the micropolar fluid are similar to those of the Newtonian fluid.However,the dependence of the microrotation on the related parameters mentioned above is complex.In order to describe these effects clearly,the dimensionless microrotation strength and the penetration depth of the microrotation are defined,which are used to explain the variation of the microrotation.In addition,the effects of various parameters on the dimensionless stress tensor at the walls are studied.  相似文献   

16.
A numerical analysis is performed to analyze the bioconvective double diffusive micropolar non-Newtonian nanofluid flow caused by stationary porous disks.The consequences of the current flow problem are further extended by incorporating the Brownian and thermophoresis aspects. The energy and mass species equations are developed by utilizing the Cattaneo and Christov model of heat-mass fluxes. The flow equations are converted into an ordinary differential model by employing the appropriate variab...  相似文献   

17.
The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto‐hydrodynamic free convection from a vertical infinite porous plate with an exponentially decaying heat generating considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered when the viscous dissipation and the Prandtl number are large. The non‐dimensional equations for the conservation of mass, momentum, energy and concentration are solved by means a numerical technique based on electric analogy (network simulation method). This method provides the numerical response of the system by running the network in circuit resolution software with the solution to both transient and steady‐state problems at the same time, and its programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The effects of the material parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and temperature fields across the boundary layer are investigated. In addition, the skin‐friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical results for velocity and temperature distributions of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The influence of partial slip, thermal radiation, chemical reaction and temperature‐dependent fluid properties on heat and mass transfer in hydro‐magnetic micropolar fluid flow over an inclined permeable plate with constant heat flux and non‐uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature, respectively. With the use of the similarity transformation, the governing system of non‐linear partial differential equations are transformed into non‐linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0 (Wolfram Research, Champaign, IL). The numerical values obtained for the velocity, microrotation, temperature, species concentration, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.  相似文献   

20.
An unsteady flow and heat transfer to an infinite porous disk rotating in a Reiner—Rivlin non-Newtonian fluid are considered. The effect of the non-Newtonian fluid characteristics and injection (suction) through the disk surface on velocity and temperature distributions and heat transfer is considered. Numerical solutions are obtained over the entire range of the governing parameters.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 85–95, January–February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号