首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic graft copolymers having ultrahigh molecular weight poly(styrene-alt-maleic anhydride) (SMA) backbones and methoxyl poly(ethylene glycol) (MPEG) grafts were synthesized via the esterification between anhydride groups with hydroxyl groups. The synthesized graft copolymers, SMA-g-MPEGs, were used as additives in the preparation of polyethersulfone (PES) membranes via phase inversion process. X-ray photoelectron spectroscopy (XPS) analysis showed the comb-like graft copolymers spontaneously segregated to membrane surface during membrane formation. Water contact angle measurements and water absorbance experiments indicated the PES/SMA-g-MPEG blend membranes were much more hydrophilic than pure PES membrane. The blend membranes had stronger protein adsorption resistance than pure PES membrane did. After washed using de-ionized water for 25 days, the blend membranes exhibited higher hydrophilicity and stronger protein adsorption resistance. This phenomenon was attributed to the further accumulation of SMA-g-MPEG additives on membrane surface in aqueous conditions. SMA-g-MPEGs can be well preserved in membrane near-surface and not lost during membrane washing due to their high molecular weight and comb-like architecture.  相似文献   

2.
The partitioning of ethylbenzene between poly(ethylene glycol) (PEG) and supercritical carbon dioxide was studied at 308.15, 328.15 and 348.15 K and 10, 15.5 and 20 MPa with PEG-400, 600 and 900 using Monte Carlo molecular simulation. The effect of a cosolvent was also studied with either 5% ethane or 5% n-octane added. Ethylbenzene favored the supercritical phase most when the density was highest, and while ethane had little effect, the addition of n-octane increased the amount of solute dissolved in carbon dioxide. Increasing polymer molecular weight led to more solute in the PEG-rich phase. This coincides with a higher amount of dissolved carbon dioxide that preferentially solvates ethylbenzene.  相似文献   

3.
Poly(ethylene glycol) (PEG) triblock and diblock amphiphilic block copolymers were synthesized from poly(ethylene glycol) and poly(ethylene glycol) monomethyl ether, respectively. The hydroxyl groups of PEG readily react with 2-(1-octadecenyl) succinic anhydride (OSA) at 140 °C through ring-opening reaction of the succinic anhydride. Both the PEG-OSA diblock and triblock copolymers are produced without use of any solvent or catalyst. The molecular structure of the copolymers was characterized by 1H NMR and FTIR spectroscopy, and the thermal properties by DSC. The behavior of the copolymers in selective and nonselective solvents was studied by 1H NMR spectroscopy in deuterium oxide and d-chloroform. The aggregation of the polymers in water was studied with a particle size analyzer and a transmission electron microscope (TEM) in bright field mode. The results show that the hydrophobic C18 chain with intramolecular succinic anhydride linker can be attached to the hydrophilic PEG chain, an ester bond forming between the blocks. The copolymers exhibit flexible, liquid-like hydrophobic blocks even in water, which is a nonsolvent for OSA. PEG-OSA block copolymers self-organize in water, forming micellar polymer aggregates in nanoscale.  相似文献   

4.
An amphiphilic dendrimer (DPEA-PEG) grafting polyethylene glycol at the terminals was prepared by endcapping of dendritic poly(ether-amide) (DPEA) with isocyanate terminated linear polyethylene glycol (PEG-NCO). The molecular structure was verified by gel permeation chromatography (GPC), 1H NMR and FT-IR. The micelle characteristic of DPEA-PEG in water was investigated. The critical micelle concentration (CMC) was determined by a fluorescence technique to be 55.5 mg/L. The hydrodynamic radius of micelles was measured by dynamic light scattering (DLS) to be 76.2 nm. The UV–vis spectrum showed that the solubility of salicylic acid increased from 1.91 to 2.78 mg/L when the concentration of DPEA-PEG attained 5 mg/mL in an aqueous solution.  相似文献   

5.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

6.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures.  相似文献   

7.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

8.
Novel chitosan-O-poly(ethylene glycol) graft copolymers were synthesized. Etherification of N-phthaloyl chitosan by poly(ethylene glycol) monomethyl ether (MPEG) iodide was carried out in dimethylformamide in the presence of silver oxide. Varying the ratio of MPEG iodide to chitosan, different degree of O-substitution of MPEG to monosaccharide residue of chitosan (5-197%) was obtained. Chemical structure of the new chitosan derivatives was confirmed using FTIR spectroscopy and analysis of functional groups. O-PEGylated chitosans are soluble in water and aqueous solutions of wide pH range. Reduced viscosity of aqueous solutions of the graft copolymers is extremely low and similar to that of MPEG-2000.  相似文献   

9.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

10.
A new type of biodegradable polymer material, poly(caprolactone)–poly(ethylene glycol) block copolymer (PCL-b-PEG), was synthesized by means of direct copolycondensation of ε-caprolactone with poly(ethylene glycol) in the presence of a Ti(OBu)4 catalyst. The degradability of the polycaprolactone was improved by introducing a PEG component into it. The degradation of PCL-b-PEG copolymer increase with a decreasing crystallinity of the copolymer, and can be controlled by adjusting the component ratio of the copolymer.  相似文献   

11.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   

12.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   

13.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

15.
Multiwall carbon nanotube (MWNT) was grafted with polyacrylate‐g‐poly (ethylene glycol) via the following two steps. First, hydroxyl groups on the surface of acid‐treated MWNT reacted with linear poly(acryloyl chloride) to generate graft on MWNT; secondly, the remaining acryloyl chloride groups were subjected to esterification with poly(ethylene glycol) leading the grafted chains on the surface of MWNTs. Thus obtained grafted MWNT was characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis showed that the weight fraction of grafted polymers amounted to 80% of the modified MWNT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6880–6887, 2006  相似文献   

16.
用偏光显微镜和原子力显微镜对比研究了PEG-PLLA嵌段共聚物在110℃或120℃等温结晶后的结晶形貌.发现在110℃时只有PEG5000-PLLA2300和PEG5000-PLLA6300在偏光显微镜下呈现环带球晶形貌,在原子力显微镜高度图中显示明显的环带,并具有交替凸凹起伏形貌.而PEG5000-PLLA12000球晶中没有出现环带形貌而是生成了规则的环线.在120℃时,PEG5000-PLLA12000的球晶中才生成了规则的环带图案,原子力显微镜也显示了其球晶具有明显的交替凸凹起伏形貌,说明过冷度直接影响环带球晶的生成.产生周期性凸凹起伏和明暗交替消光是由片晶沿着球晶的半径方向周期性扭转造成的,片晶在凸起部分是Edge-on取向,在凹下部分是Flat-on取向.  相似文献   

17.
Coumarin-functionalized poly(ethylene glycol) (PEG) monols and diols were isothermally crystallized at temperatures between 20 and 35 °C before and after exposure to approximately 110 J cm−2 of ultra-violet A (λ > 300 nm, UVA) irradiation. Irradiation dimerized the coumarin groups and chain-extended the coumarin-functionalized PEG oligomers. The higher molecular weights reduced the crystal growth rate by as much as 50% compared to the non-irradiated coumarin-functionalized PEG oligomers under ambient crystallization conditions. Hoffman’s kinetic nucleation theory was utilized to evaluate the types of nucleation that occurred for the coumarin-functionalized PEG diols (COU-PEG-COU). Crystallization regimes II and III were observed for the coumarin-modified PEG oligomers before and after exposure to UVA light.  相似文献   

18.
Block copolymerization by using isocyanates is an effective method for incorporating PHB and PEG because it can prepare copolymers with good properties, such as toughness, strength, and so on. In this study, we adopted soil suspension system to estimate the biodegradability of a series of PHB/PEG multiblock copolymers with different compositions and block lengths. In the degradation process, the changes in weight loss, molecular weight, and tensile strength were periodically measured to determine the biodegradability, and the surface morphology was also observed by SEM. In contrast to pure PHB, the weight loss of the copolymer was relatively lower. On the other hand, the tensile strength and molecular weight experienced apparent decrease, and for BHG1000-3-1, they reached 46.7% and 77.7% of the initial value, respectively. SEM observation showed that the surface was covered with numerous erosion pits. All these indicate that the degradation indeed took place and long-chain molecules have been hydrolyzed into shorter ones. The crystallization behavior was also investigated by DSC and WAXD. The results showed that both the segments, PEG and PHB, can form crystalline phases at lower PHB contents ranging from 29% to 44%, and when PHB component was more than 60%, only PHB phase can crystallize.  相似文献   

19.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L -lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64–88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号