首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a mixed-integer linear programming formulation for the multi-mode resource-constrained project scheduling problem with uncertain activity durations. We consider a two-stage robust optimisation approach and find solutions that minimise the worst-case project makespan, whilst assuming that activity durations lie in a budgeted uncertainty set. Computational experiments show that this easy-to-implement formulation is many times faster than the current state-of-the-art solution approach for this problem, whilst solving over 40% more instances to optimality over the same benchmarking set.  相似文献   

2.
Although uncertainty is rife in many project management contexts, little is known about adaptively optimizing project schedules. We formulate the problem of adaptively optimizing the expected present value of a project’s cash flow, and we show that it is practical to perform the optimization. The formulation includes randomness in activity durations, costs, and revenues, so the optimization leads to a recursion with a large state space even if the durations are exponentially distributed. We present an algorithm that partially exercises the “curse of dimensionality” as computational results demonstrate. Most of the paper is restricted to exponentially distributed task durations, but we sketch the adaptation of the algorithm to approximate any probability distribution of task duration.  相似文献   

3.
Time-cost trade-off via optimal control theory in Markov PERT networks   总被引:1,自引:0,他引:1  
We develop a new analytical model for the time-cost trade-off problem via optimal control theory in Markov PERT networks. It is assumed that the activity durations are independent random variables with generalized Erlang distributions, in which the mean duration of each activity is a non-increasing function of the amount of resource allocated to it. Then, we construct a multi-objective optimal control problem, in which the first objective is the minimization of the total direct costs of the project, in which the direct cost of each activity is a non-decreasing function of the resources allocated to it, the second objective is the minimization of the mean of project completion time and the third objective is the minimization of the variance of project completion time. Finally, two multi-objective decision techniques, viz, goal attainment and goal programming are applied to solve this multi-objective optimal control problem and obtain the optimal resources allocated to the activities or the control vector of the problem  相似文献   

4.
We develop a multi-objective model for the time–cost trade-off problem in a dynamic PERT network using an interactive approach. The activity durations are exponentially distributed random variables and the new projects are generated according to a renewal process and share the same facilities. Thus, these projects cannot be analyzed independently. This dynamic PERT network is represented as a network of queues, where the service times represent the durations of the corresponding activities and the arrival stream to each node follows a renewal process. At the first stage, we transform the dynamic PERT network into a proper stochastic network and then compute the project completion time distribution by constructing a continuous-time Markov chain. At the second stage, the time–cost trade-off problem is formulated as a multi-objective optimal control problem that involves four conflicting objective functions. Then, the STEM method is used to solve a discrete-time approximation of the original problem. Finally, the proposed methodology is extended to the generalized Erlang activity durations.  相似文献   

5.
Determining discrete time-cost tradeoffs in project networks allows for the control of the processing time of an activity via the amount of non-renewable resources allocated to it. Larger resource allocations with associated higher costs reduce activities’ durations. Given a set of execution modes (time-cost pairs) for each activity, the discrete time-cost tradeoff problem (DTCTP) involves selecting a mode for each activity so that either: (i) the project completion time is minimized, given a budget, or (ii) the total project cost is minimized, given a deadline, or (iii) the complete and efficient project cost curve is constructed over all feasible project durations. The DTCTP is a problem with great applicability prospects but at the same time a strongly N P{\mathcal N}\,P-hard optimization problem; solving it exactly has been a real challenge. Known optimal solution methodologies are limited to networks with no more than 50 activities and only lower bounds can be computed for larger, realistically sized, project instances. In this paper, we study a path-based approach to the DTCTP, in which a new path-based formulation in activity-on-node project networks is presented. This formulation is subsequently solved using an exact cutting plane algorithm enhanced with speed-up techniques. Extensive computational results reported for almost 5,000 benchmark test problems demonstrate the effectiveness of the proposed algorithm in solving to optimality for the first time some of the hardest and largest instances in the literature. The promising results suggest that the algorithms may be embedded into project management software and, hence, become a useful tool for practitioners in the future.  相似文献   

6.
A well-known problem in critical path analysis involves normal and crash durations being provided for each activity, with corresponding costs, and requires a minimum cost schedule of durations to be determined for all possible durations of the project. It has long been known that an optimal solution to the problem can be obtained iteratively by constructing a minimum cost network flow problem and adjusting the durations of activities corresponding to a minimum capacity cut-set. A recent paper described this method, but gave no indication of how the method could be derived. It is shown here that a linear programming formulation and its dual enables this to be done very simply.  相似文献   

7.
The resource-constrained project scheduling problem involves the determination of a schedule of the project activities, satisfying the precedence and resource constraints while minimizing the project duration. In practice, activity durations may be subject to variability. We propose a stochastic methodology for the determination of a project execution policy and a vector of predictive activity starting times with the objective of minimizing a cost function that consists of the weighted expected activity starting time deviations and the penalties or bonuses associated with late or early project completion. In a computational experiment, we show that our procedure greatly outperforms existing algorithms described in the literature.  相似文献   

8.
In project management, the activity durations can often be reduced by dedicating additional resources. The Time/Cost Trade-off Problem considers the compromise between the total cost and the project duration. The discrete version of the problem assumes a number of time/cost pairs, called modes, and selects a mode for each activity. In this paper, we consider the Discrete Time/Cost Trade-off Problem. We study the Deadline Problem, that is, the problem of minimizing total cost subject to a deadline on the project duration. To solve the Deadline Problem, we propose optimization and approximation algorithms that are based on the optimal Linear Programming Relaxation solutions. Our computational results from large-sized problem instances reveal the satisfactory behaviour of our algorithms.  相似文献   

9.
The time/cost trade-off models in project management aim to reduce the project completion time by putting extra resources on activity durations. The budget problem in discrete time/cost trade-off scheduling selects a time/cost mode for each activity so as to minimize the project completion time without exceeding the available budget. There may be alternative modes that solve the budget problem optimally and each solution may have a different total cost value. In this study we consider the budget problem and aim to find the minimum cost solution among the minimum project completion time solutions. We analyse the structure of the problem together with its linear programming relaxation and derive some mechanisms for reducing the problem size. We solve the reduced problem by branch and bound based optimization and heuristic algorithms. We find that our branch and bound algorithm finds optimal solutions for medium-sized problem instances in reasonable times and the heuristic algorithms produce high quality solutions very quickly.  相似文献   

10.
In this article, we consider a decision process in which vaccination is performed in two phases to contain the outbreak of an infectious disease in a set of geographic regions. In the first phase, a limited number of vaccine doses are allocated to each region; in the second phase, additional doses may be allocated to regions in which the epidemic has not been contained. We develop a simulation model to capture the epidemic dynamics in each region for different vaccination levels. We formulate the vaccine allocation problem as a two-stage stochastic linear program (2-SLP) and use the special problem structure to reduce it to a linear program with a similar size to that of the first stage problem. We also present a Newsvendor model formulation of the problem which provides a closed form solution for the optimal allocation. We construct test cases motivated by vaccine planning for seasonal influenza in the state of North Carolina. Using the 2-SLP formulation, we estimate the value of the stochastic solution and the expected value of perfect information. We also propose and test an easy to implement heuristic for vaccine allocation. We show that our proposed two-phase vaccination policy potentially results in a lower attack rate and a considerable saving in vaccine production and administration cost.  相似文献   

11.
12.
Projects are often subject to various sources of uncertainties that have a negative impact on activity durations and costs. Therefore, it is crucial to develop effective approaches to generate robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors. In this paper, we investigate the robust discrete time/cost trade-off problem, which is a multi-mode project scheduling problem with important practical relevance. We introduce surrogate measures that aim at providing an accurate estimate of the schedule robustness. The pertinence of each proposed measure is assessed through computational experiments. Using the insights revealed by the computational study, we propose a two-stage robust scheduling algorithm. Finally, we provide evidence that the proposed approach can be extended to solve a complex robust problem with tardiness penalties and earliness revenues.  相似文献   

13.
The resource-constrained project scheduling problem (RCPSP) has been the subject of a great deal of research during the previous decades. This is not surprising given the high practical relevance of this scheduling problem. Nevertheless, extensions are needed to be able to cope with situations arising in practice such as multiple activity execution modes, activity duration changes and resource breakdowns. In this paper we analytically determine the impact of unexpected resource breakdowns on activity durations. Furthermore, using this information we develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource unavailabilities. This strategy will be compared to a traditional simulation-based procedure and to a heuristic developed for the case of stochastic activity durations.  相似文献   

14.
We consider the time‐dependent magnetic induction model where the sought magnetic field interacts with a prescribed velocity field. This coupling results in an additional force term and time dependence in Maxwell's equation. We propose two different magnetic diffusivity stabilized continuous nodal‐based finite element methods for this problem. The first formulation simply adds artificial magnetic diffusivity to the partial differential equation, whereas the second one uses a local projected magnetic diffusivity as stabilization. We describe those methods and analyze them semi‐discretized in space to get bounds on stabilization parameters where we distinguish equal‐order elements and Taylor‐Hood elements. Different numerical experiments are performed to illustrate our theoretical findings.  相似文献   

15.

We consider a nonlinear initial boundary value problem in a two-dimensional rectangle. We derive variational formulation of the problem which is in the form of an evolutionary variational inequality in a product Hilbert space. Then, we establish the existence of a unique weak solution to the problem and prove the continuous dependence of the solution with respect to some parameters. Finally, we consider a second variational formulation of the problem, the so-called dual variational formulation, which is in a form of a history-dependent inequality associated with a time-dependent convex set. We study the link between the two variational formulations and establish existence, uniqueness, and equivalence results.

  相似文献   

16.
17.
This paper investigates a distributionally robust scheduling problem on identical parallel machines, where job processing times are stochastic without any exact distributional form. Based on a distributional set specified by the support and estimated moments information, we present a min-max distributionally robust model, which minimizes the worst-case expected total flow time out of all probability distributions in this set. Our model doesn’t require exact probability distributions which are the basis for many stochastic programming models, and utilizes more information compared to the interval-based robust optimization models. Although this problem originates from the manufacturing environment, it can be applied to many other fields when the machines and jobs are endowed with different meanings. By optimizing the inner maximization subproblem, the min-max formulation is reduced to an integer second-order cone program. We propose an exact algorithm to solve this problem via exploring all the solutions that satisfy the necessary optimality conditions. Computational experiments demonstrate the high efficiency of this algorithm since problem instances with 100 jobs are optimized in a few seconds. In addition, simulation results convincingly show that the proposed distributionally robust model can hedge against the bias of estimated moments and enhance the robustness of production systems.  相似文献   

18.
For production planning problems, cost parameters can be uncertain due to marketing activities and interest rate fluctuation. In this paper, we consider a single-item two-stage stochastic lot-sizing problem under cost parameter uncertainty. Assuming cost parameters will increase or decrease after time period p each with certain probability, we minimize the total expected cost for a finite horizon problem. We develop an extended linear programming formulation in a higher dimensional space that can provide integral solutions by showing that its constraint matrix is totally unimodular. We also project this extended formulation to a lower dimensional space and obtain a corresponding extended formulation in the lower dimensional space. Final computational experiments demonstrate that the extended formulation is more efficient and performs more stable than the two-stage stochastic mixed-integer programming formulation.  相似文献   

19.
This paper describes a branch and bound algorithm for project scheduling with resource constraints. The algorithmis based on the idea of using disjunctive arcs for resolving conflicts that are created whenever sets of activities have to be scheduled whose total resource requirements exceed the resource availabilities in some periods. Four lower bounds are examined. The first is a simple lower bound based on longest path computations. The second and third bounds are derived from a relaxed integer programming formulation of the problem. The second bound is based on the Linear Programming relaxation with the addition of cutting planes, and the third bound is based on a Lagrangean relaxation of the formulation. This last relaxation involves a problem which is a generalization of the longest path computation and for which an efficient, though not polynomial, algorithm is given. The fourth bound is based on the disjunctive arcs used to model the problem as a graph.We report computational results on the performance of each bound on randomly generated problems involving up to 25 activities and 3 resources.  相似文献   

20.
We present an analytic approach to solve a degenerate parabolic problem associated with the Heston model, which is widely used in mathematical finance to derive the price of an European option on an risky asset with stochastic volatility. We give a variational formulation, involving weighted Sobolev spaces, of the second‐order degenerate elliptic operator of the parabolic PDE. We use this approach to prove, under appropriate assumptions on some involved unknown parameters, the existence and uniqueness of weak solutions to the parabolic problem on unbounded subdomains of the half‐plane. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号