首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of [99mTc(CO)3(IDA–PEG3–CB)]. The novel chlorambucil derivative was successfully synthesized by conjugation of iminodiacetic acid (IDA) to chlorambucil via a pegylated linker. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(IDA–PEG3–CB)], which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(IDA–PEG3–CB)] accumulated in the tumor with favorable uptake and retention. The good accumulation in tumor tissue with high tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled chlorambucil derivative by structural modification.  相似文献   

2.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of [99mTc(CO)3(PA-TZ-CHC)]+. The novel colchicine (CHC) ligand was successfully synthesized via “click” reaction. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get [99mTc(CO)3(PA-TZ-CHC)]+, which was hydrophilic and cationic, and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(PA-TZ-CHC)]+ accumulated in the tumor with good uptake while comparatively low retention. The clearance of the 99mTc-complex from normal organs was fast, resulting in increasing tumor/blood and tumor/muscle ratios. The promising results in preliminary biodistribution studies warrant further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled CHC derivative by structural modification.  相似文献   

3.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of 99mTc(CO)3-labeled pegylated (PEG) 2-nitroimidazoles for tumor hypoxia imaging. The novel 2-nitroimidazole derivatives were successfully synthesized by conjugation of tridendate chelators to 2-nitroimidazole via PEG3 linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get cationic [99mTc(CO)3(BPA-PEG3-NIM)]+, neutral [99mTc(CO)3(AOPA-PEG3-NIM)] and anionic [99mTc(CO)3(IDA-PEG3-NIM)]? respectively, all of which were hydrophilic and stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3-labeled pegylated 2-nitroimidazoles accumulated in the tumor with low uptake. 99mTc-chelate and charge had significant impact on partition coefficient, radiotracer tumor uptake and pharmacokinetic properties. The results indicate the need for synthetic modification of the parent 2-nitroimidazole derivatives and the 99mTc-chelate with a view to improve the tumor targeting efficacy and in vivo kinetic profiles.  相似文献   

4.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

5.
To develop potential new Tc radiopharmaceuticals, a novel compound [99mTc(CO)2(NO)(EHIDA)]0 (EHIDA: 2,6-diethylphenylcarbamoylmethyliminodiacetic acid) has been prepared by reacting [99mTc(CO)3)(EHIDA)] with NOBF4 both in water and acetonitrile. The conversion of [99mTc(CO)3)(EHIDA)] to [99mTc(CO)2(NO)(EHIDA)]0 was supported by TLC, HPLC and eletrophoresis. The radiochemical purity (more than 99%) was proved by TLC and HPLC. The biodistribution in mice demonstrated that [Tc(CO)2(NO)(EHIDA)]0 showed higher uptake in blood, kidney and lung (15 min, blood: 19.24±2.95; kidney: 13.61±3.49; lung: 10.81±1.09.) but a lower uptake in liver (15 min, 5.73±0.74). The slower clearances (120 min, blood: 12.75±1.34; kidney: 13.61±3.49) from blood and kidney were also found. This research describes two methods for the conversion of [99mTc(CO)3]+ into [99mTc(CO)2)(NO)]2+ by using NOBF4 as the source of NO+ both in organic solvent and water. The latter method offers the possibility to introduce the NO-group in high yield in water.  相似文献   

6.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of the 99mTc(CO)3–AOPA colchicine conjugate. The novel ligand was successfully synthesized by conjugation of N-(acetyloxy)-2-picolylamino (AOPA) to deacetylcolchicine via a short carbonyl-methylene linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core. 99mTc(CO)3–AOPA colchicine conjugate was hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3–AOPA colchicine conjugate accumulated in the tumor with good uptake and retention. However, its clearance from normal organs was not so fast, resulting in poor T/NT ratios. Further modification on the linker or/and 99mTc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.  相似文献   

7.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

8.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

9.
Conventional 99mTc-radiopharmaceuticals for the detection of tumor hypoxia generally possess a single nitroimidazole moiety. Herein, we report the synthesis and evaluation of a 99mTc-complex with three-nitroimidazole moieties in an attempt to improve hypoxic cell detection. Isocyanide derivative of metronidazole (MetroNC) was synthesized and subsequently radiolabeled with [99mTc(CO)3(H2O)3]+ precursor complex, wherein the three labile water molecules were replaced with MetroNC ligand to form a pseudo-octahedral [99mTc(CO)3(MetroNC)3]+ complex. Analysis of corresponding Re(CO)3-analog prepared in macroscopic scale confirmed the formation of expected complex. Cyclic voltammetric studies of [Re(CO)3(MetroNC)3]+ complex showed no significant change in single-electron reduction potential (SERP) of MetroNC ligand (??0.96 V) upon forming the [Re(CO)3(MetroNC)3]+ complex (??0.90 V). In vitro studies in Chinese hamster ovary (CHO) cells showed three-fold preferential accumulation of [99mTc(CO)3(MetroNC)3]+ complex in hypoxic cells over normoxic cells. Biodistribution studies of [99mTc(CO)3(MetroNC)3]+ complex in Swiss mice bearing fibrosarcoma tumor showed tumor uptake and steady retention till 60 min post injection. Present study constitutes a novel design approach towards development of a 99mTc-radiopharmaceutical for hypoxia imaging application, which could be extended to other potential nitroimidazole ligands.  相似文献   

10.
Mixed ligand fac-tricarbonyl complex of [99mTc(CO)3-DMSA-MIBI] has been prepared starting from the precursor [99mTc(OH2)3(CO)3]+. The complex can be obtained in good yield and purity in a two-step procedure by first attaching meso-2,3-dimercaptosuccinic acid (DMSA, HOOCCH(SH)CH(SH)COOH) with [99mTc(OH2)3(CO)3]+, followed by addition of MIBI [tetrakis-2-methoxyisobutylisonitrile (CH3OC(CH3)2CH2-N≡C) copper(I) tetrafluoroborate] solution. The complex was characterized by TLC and HPLC and was studied by means of octanol-water partition coefficient, electrophoresis, stability in vitro, and normal mice experiment. Biodistribution in mice demonstrated that the complex showed higher myocardial uptake after 0.5-hour p.i. The ratios of heart/liver (%ID/g) in the case of 99mTc(CO)3-DMSA-MIBI was higher (1.88) than that observed in case of 99mTc-MIBI1 (0.93) after 0.5-hour p.i. (P<0.05). Results showed that the complex may be developed to a novel myocardial perfusion-imaging agent.  相似文献   

11.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

12.
Summary The organometallic precursor fac-[99mTc(CO)3(H2O)3]+ was reacted with N-ethoxy, N-ethyl dithiocarbamate (NOET) in phosphate buffered saline (pH 7.4) at room temperature for 30 minutes to produce the 99mTc(CO)3-NOET complex. The radiochemical purity (RCP) of the product was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature (RT) was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The biodistribution comparison in mice of the 99mTc(CO)3-NOET complex and the 99mTcN-NOET complex showed that the former had a lower heart and brain uptake as compared to that of the latter, suggesting the incorporation of the [99mTc(CO)3]+ core into the NOET ligand does not improve the biological features as a myocardial imaging agent.  相似文献   

13.
99mTc-Sestamibi has been playing an important role in the cardiac imaging for the last decades. Previously, we reported that [99mTc(CO)3(MIBI)3]+ demonstrated a significant location in myocardium with a lower liver uptake as compared with 99mTc-Sestamibi. In this work, we found that new [99mTc(CO)2(MIBI)4]+ could be prepared with high radiochemical purity. The inter-transformations between [99mTc(CO)3(H2O)(MIBI)2]+, [99mTc(CO)3(MIBI)3]+, and [99mTc(CO)2(MIBI)4]+ were investigated and biodistribution was performed to evaluate the [99mTc(CO)2(MIBI)4]+ as a myocardial perfusion imaging agent. The results showed that one more CO was replaced by MIBI slowing down the pharmacokinetics. The structure characterization was performed on their corresponding rhenium complexes, and the results indicated that there were differences between 99mTc-CO-MIBI and Re-CO-MIBI in preparation and hydrophobic characteristics.  相似文献   

14.
Rhenium Dicarbonyl‐Nitrosyl Complexes with Imidazole Different rhenium‐dicarbonyl‐nitrosyl complexes with imidazole (Im) as monodentate ligand have been synthesized and characterized, starting from [NEt4][ReCl3(CO)2(NO)] and [ReCl(μ?Cl)(CO)2(NO)]2. Whereas the complexes [ReCl2(Im)(CO)2(NO)] and [ReCl(Im)2(CO)2(NO)]+ were achieved in high yields, the complex [Re(Im)3(CO)2(NO)]2+ with three imidazole ligands could only be isolated after complete removal of all halide ions (with AgBF4) in low yield. The synthesis of a corresponding 99mTc‐dicarbonyl‐nitrosyl complex with imidazole opens a new perspective for such compounds as potential radiopharmaceuticals and alternatives to the already established 99mTc‐tricarbonyl complexes.  相似文献   

15.
The confirmation that N-substituted imidodiacetic acids, as small and simple ligand systems containing amines and carboxylic acids, could be coordinated to the tricarbonyl core and form inert complexes with [99mTc (CO)3(H2O)3]+, is demonstrated. The HPLC quality control results of 99mTc-carbonyl tagged IDA molecules, performed by gradient HPLC, have shown that HIDA, EHIDA and p-butyl-IDA form complexes with [99mTc(CO)3(H2O)3]+, with a labeling yield of ~90% for each of 99mTc(CO)3 IDA derivatives. However, the changes in the structure of labeled compounds, e.g., EHIDA, influence the changes in the biological behavior. In comparison with 99mTc-EHIDA, the biliary excretion of 99mTc(CO)3 EHIDA was lower, but the urinary excretion higher. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

17.
A novel C3′‐functionalized thymidine dithiocarbamate derivative (3’DTC‐TdR) was successfully synthesized and labelled using [99mTcO]3+ core and [99mTc(CO)3(H2O)3]+ core with high yields. The structures of the 99mTc complexes were verified by preparation and characterization of the corresponding stable rhenium complexes. Both of the complexes were lipophilic and stable in vitro. Cell internalization experiments indicated that the uptakes of 99mTcO‐3’DTC‐TdR were related to nucleoside transporters. Biodistribution of these complexes in mice bearing tumor showed that they had high tumor uptakes, good tumor/muscle ratios and tumor/blood ratios. Especially for 99mTcO‐3’DTC‐TdR, it exhibited the highest tumor/muscle ratio and tumor/blood ratio at 4 h post‐injection. SPECT/CT imaging studies indicated clear accumulation in tumor, suggesting 99mTcO‐3’DTC‐TdR would be a promising candidate for tumor imaging.  相似文献   

18.
The aim of this study is to examine biological behaviour of radiolabeled guanine with [Tc(CO)3]+ core in vitro and in vivo. In vitro biological behavior of 99mTc(CO)3–Gua was evaluated on Lung (A-549), Breast (MCF-7), Colonic (Caco) carcinoma cell lines and normal human bronchial epithelial (NHBE). 99mTc(CO)3–Gua compound showed high uptake on A-549 cell line when compared to NHBE cell line. Biodistribution characteristics of 99mTc(CO)3–Gua was evaluated using New Zeland Rabbits. Scintigraphic results showed that a high level of radioactivity was observed in the lungs and liver shortly after administration of the 99mTc(CO)3–Gua and excretion takes place via both renal and hepatobiliary route. It was concluded that 99mTc(CO)3–Gua could be used as a nucleotide radiopharmaceutical for imaging purposes.  相似文献   

19.
S‐Alkylated cysteines are used as efficient tridentate N,O,S‐donor‐atom ligands for the fac‐[M(CO)3]+ moiety (M=99mTc or Re). Reaction of (Et4N)2[ReBr3(CO)3] ( 3 ) with the model S‐benzyl‐L ‐cysteine ( 2 ) leads to the formation of [Re( 2′ )(CO)3] ( 4 ) as the exclusive product ( 2′ =C‐terminal anion of 2 ). The tridentate nature of the alkylated cysteine in 4 was established by X‐ray crystallography. Compound 2 reacts with [99mTc(OH2)3(CO)3]+ under mild conditions (10−4 M , 50°, 30 min) to afford [99mTc( 2′ )(CO)3] ( 5 ) and represents, therefore, an efficient chelator for the labelling of biomolecules. L ‐Cysteine, S‐alkylated with a 3‐aminopropyl group (→ 7 ), was conjugated via a peptide coupling sequence with Coα‐[α‐(5,6‐dimethyl‐1H‐benzimidazolyl)]‐Coβ‐cyanocobamic b‐acid ( 6 ), the b‐acid of cyanocob(III)alamin (vitamin B12) (Scheme 3). More convenient was a one‐pot procedure with a derivative of vitamin B12 comprising a free amine group at the b‐position. This amine 15 was treated with NHS (N‐hydroxysuccinimide)‐activated 1‐iodoacetic acid 14 to introduce an I‐substituent in vitamin B12. Subsequent addition of unprotected L ‐cysteine resulted in nucleophilic displacement of the I‐atom by the S‐substituent, affording the vitamin B12 alkylated cysteine fragment 17 (Scheme 4). The procedure was quantitative and did not require purification of intermediates. Both cobalamin–cysteine conjugates could be efficiently labelled with [99mTc(OH2)3(CO)3]+ ( 1 ) under conditions identical to those of the model complex 5 . Biodistribution studies of the cobalamin conjugates in mice bearing B10‐F16 melanoma tumors showed a tumor uptake of 8.1±0.6% and 4.4±0.5% injected dose per gram of tumor tissue after 4 h and 24 h, respectively (Table 1).  相似文献   

20.
In the present work, three neutral 99mTc(CO)3 complexes of nitroimidazole were synthesized and their potential to detect tumor hypoxia is evaluated in vivo. Triazole derivatives of 2-, 4- and 5-nitroimidazole were synthesized via ‘click chemistry’ route. The ligands synthesized were characterized and subsequently radiolabeled using [99mTc(CO)3(H2O)3]+ precursor complex to obtain corresponding neutral 99mTc(CO)3 complexes in >90 % radio chemical purity. The complexes were subsequently evaluated in Swiss mice bearing fibrosarcoma tumor and in vivo distribution observed was thoroughly analyzed. All complexes showed uptake in tumor, however, contrary to general expectations, the 5-nitroimidazole complex showed significantly higher tumor uptake (p < 0.05) at 30 min and 60 min p.i., compared to the 2-nitroimidazole counterpart. Though a conclusive explanation for this observation could not be obtained, present study underlined the significance of evaluating nitroimidazole radiotracers other than 2-nitroimidazole for detecting tissue hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号