首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethyleneterephthalate (PET) based proton exchange membrane for using in fuel cells was successfully prepared by gamma radiation-induced graft copolymerization of styrene monomer onto PET film and the consequent selective sulfonation of the grafting chain in the film state using chlorosulfonic acid (ClSO3H). The effects of grafting conditions (e.g., monomer concentration, irradiation dose) on the degree of grafting and sulfonation condition (e.g., optimum concentration of ClSO3H) on the degree of sulfonation were studied. The degree of grafting, the degree of sulfonation and the physico-chemical properties (such as, water uptake, mechanical strength, thermal durability, hydrolytic stability, oxidative stability) of the gamma radiation-induced grafted membrane were found to be better when compared to those of the UV-radiation grafted membrane. The membrane shows higher ion exchange capacity (0.9 mmol g?1) and higher proton conductivity (0.075 S cm?1), similar to those of Nafion membrane.  相似文献   

2.
Ultra-high molecular weight polyethylene (UHMWPE) powder was irradiated by gamma rays using a 60Co source. Simultaneous and pre-irradiation grafting was performed in air and in inert atmosphere at room temperature. The monomer selected for grafting was styrene, since the styrene-grafted UHMWPE could be readily post-sulfonated to afford proton exchange membranes (PEMs). The effect of absorbed radiation dose and monomer concentration in methanol on the degree of grafting (DG) is discussed. It was found that the DG increases linearly with increase in the absorbed dose, grafting time and monomer concentration, reaching a maximum at a certain level. The order of rate dependence of grafting on monomer concentration was found to be 2.32. Furthermore, the apparent activation energy, calculated by plotting the Arrhenius curve, was 11.5 kJ/mole. Lower activation energy and high rate dependence on monomer concentration shows the facilitation of grafting onto powder substrate compared with film. The particle size of UHMWPE powder was measured before and after grafting and found to increase linearly with increase in level of grafting. FTIR-ATR analysis confirmed the styrene grafting. The grafted UHMWPE powder was then fabricated into film and post-sulfonated using chlorosulfonic acid for the purposes of evaluating the products as inexpensive PEM materials for fuel cells. The relationship of DG with degree of substitution (DS) of styrene per UHMWPE repeat unit and ion exchange capacity (IEC) is also presented.  相似文献   

3.
Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2–2.9 mmol/g and 0.03–0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting.  相似文献   

4.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

5.
To prepare a crosslinked hybrid polymer electrolyte membrane (PEM) with high chemical stability, a silane monomer, namely p‐styryltrimethoxysilane (StSi), was first grafted to poly(ethylene‐co‐tetrafluoroethylene) (ETFE) film by γ‐ray preirradiation. Hydrolysis‐condensation and sulfonation were then performed on the StSi‐grafted ETFE (StSi‐g‐ETFE) films to give them crosslinks and proton conductibility, respectively. Thus, a crosslinked proton‐conducting hybrid PEM was obtained. The crosslinks introduced by the silane‐condensation have an inorganic ? Si? O? Si? structure, which enhance the chemical and thermal stabilities of the PEM. The effect of the timing of the hydrolysis‐condensation (before or after sulfonation) and the sulfonation method (by chlorosulfonic acid or H2SO4) on the properties of the resulting hybrid PEMs such as ion‐exchange capacity, proton conductivity, water uptake, chemical stability, and methanol permeability were investigated to confirm their applicability in fuel cells. We conclude that the properties of the new crosslinked hybrid StSi‐grafted PEMs are superior to divinylbenzene (DVB)‐crosslinked styrene‐grafted membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5559–5567, 2008  相似文献   

6.
《先进技术聚合物》2018,29(1):658-667
The main goal of the present work is the development of partially fluorinated, low‐cost proton exchange membranes. The styrene grafted onto commercial ethylene chlorotrifluoroethylene (ECTFE) membranes using solution grafting technique, and after that the membranes were sulfonated. Diluting styrene on ECTFE with a solvent mixture of methanol plus methylene chloride (1:1) was highly effective in promoting the grafting reaction as indicated by the increase in the degree of grafting (DG) to 21.3% compared to other solvents. The DG in ECTFE membranes increased with an increase in the monomer concentration up to 60% and then declined. Fourier transform infrared spectroscopic analysis confirmed grafting and sulfonation onto ECTFE films. The maximum value of proton conductivity for ECTFE‐g‐PSSA film with DG = 21.3% was observed to be 141 mS cm−1, which is also higher than those of Nafion 212 membrane. Furthermore, the activation energy of ECTFE‐g‐PSSA membranes was obtained ranging from 8.27 to 9.726 kJ mol−1. So both proton transport mechanisms (hopping and vehicle) have been commonly accepted. The mobility of the charge carriers calculated from proton conductivity data has robust dependence on the grafting yield and temperature. Moreover, the tensile strength and elongation at break ratio decreases with the increase in DG. The water and methanol uptakes increase up to 0.97% and 30%, respectively, for the highest DG value. Finally, the ECTFE‐g‐PSSA has lower cost and higher conductivity they could be better used instead of Nafion in direct methanol fuel cells.  相似文献   

7.
In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.  相似文献   

8.
Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) was studied for synthesis of ion exchange membranes. Radiation-induced grafting of styrene onto ETFE films was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. The ETFE films were irradiated at 20 kGy dose at room temperature and chemical changes were monitored after contact with styrene for grafting. The post-irradiation time was established at 14 days when the films were remained in styrene/toluene 1:1 v/v. After this period the grafting degree was evaluated in the samples. The grafted films were sulfonated using chlorosulfonic acid and 1, 2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The membranes were analyzed by infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermogravimetric measurements (TG) and degree of grafting (DOG). The ion exchange capacity (IEC) of membranes was determined by acid–base titration and the values for ETFE membranes were achieved higher than Nafion® films. Preliminary single cell performance was made using pure H2 and O2 as reactants at a cell temperature of 80 °C and atmospheric gas pressure. The fuel cell performance of ETFE films was satisfactory when compared to state-of-art Nafion® membranes.  相似文献   

9.
A series of poly(arylene ether sulfone)‐block‐sulfonated polybutadiene (PAES‐b‐sPB) with different ion exchange capacities (IECs) were synthesized and evaluated as proton exchange membranes (PEMs) for possible applications in fuel cells. These sulfonated block copolymers were synthesized via condensation reaction between modified PAES and PB prepolymers, followed by selective post‐sulfonation of PB blocks using acetyl sulfate as the sulfonating reagent. The sulfonic groups were only attached onto PB blocks due to the high reactivity of double bonds to acetyl sulfate. The success of synthesis and selective post‐sulfonation were all confirmed by the Fourier transform infrared (FT‐IR) and nuclear magnetic resonance (NMR) spectra. PAES‐b‐sPB had good film‐forming ability and thermal stability. Mechanical properties of membranes varied with the sulfonation. The presence of sulfonic groups increased the tensile strength and Young's modulus but decreased the elongation at break. Transmission electron microscopy (TEM) images showed large ionic aggregates in membranes. Phase separation as well as the interconnected sulfonate groups which only localized on flexible PB blocks led to these ionic domains. The proton conductivity increased with the increasing IEC and temperature. With relatively low IEC, most membranes still exhibited sufficient proton conductivity. The above results indicated this strategy could be a prospective choice to prepare novel PEMs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel approach was developed to overcome the non-uniform distribution of grafted polystyrene (PS) chains across proton exchange membranes (PEMs) manufactured using radiation induced graft polymerization of commercialized fluoropolymer films. This process involves the three key steps of grafting of styrene into fluoropolymer powder, processing the grafted powder into membranes, and then obtaining the PEM by sulfonation of these membranes. The structure of the membranes and the PEMs were analyzed by means of infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope with energy-dispersive X-ray analysis (SEM-EDX) to demonstrate the uniform distribution of poly(styrene-sulfonic acid) (denoted as PSSA) graft-chains across the PEM. The properties of the resulting PEMs, such as their ion exchange capacity (IEC), water uptake (WU), proton conductivity, dimensional stability, oxidative stability and thermal stability, were also investigated.  相似文献   

11.
We prepared proton exchange membranes (PEMs) by 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-mediated living-radical graft polymerization (LRGP) of styrene into fluoropolymer films and subsequent sulfonation. Poly(vinylidene fluoride) (PVDF) and poly(ethylene-co-tetrafluoroethylene) (ETFE) films were first irradiated and then treated with TEMPO solutions in various solvents. TEMPO addition was confirmed by the test of styrene grafting into TEMPO-treated films at 60 °C, at which the LRGP never proceeds. This test enabled us to differentiate the LRGP from the conventional graft polymerization. In order to gain a deep insight about TEMPO-addition reaction, the TEMPO-penetration behavior into the base polymer films was examined by a permeation experiment and computer simulation. Xylene and dioxane were appropriate solvents for the complete introduction of TEMPO into PVDF and ETFE films, respectively. Then, the LRGP of styrene was performed based on the fully TEMPO-capped films at 125 °C with various solvents. By using an alcoholic solvent, the degree of grafting was enhanced and it reached a maximum of 38%. This grafted film was sulfonated to prepare a PEM showing an ion exchange capacity of 2.2 meq/g and proton conductivity of 1.6×10?1 S/cm.  相似文献   

12.
Poly(ether ketone)s bearing pendent sulfonate groups (SPEK‐x/y/z) have been successfully synthesized via copolyacylation of a presulfonated monomer SBP and two isomeric AB‐type self‐condensable comonomers, that is, 4‐phenoxybenzoic acid (p‐POBA) and 3‐phenoxybenzoic acid (m‐POBA). Proton‐exchange membranes (PEMs) with precisely controlled ion‐exchange capacity (IEC) and high strength can be readily prepared from these ionomers. PEMs prepared from p‐POBA other than m‐POBA exhibit much higher dimensional stability and proton conductivity at elevated temperature above 60 °C, showing prominent isomeric (para vs. meta) effects of polymer structural units. Furthermore, properties of PEMs prepared from p‐POBA are optimized by tuning IEC. SPEK‐1.0/2.2/0 with an IEC of 1.84 mmol g?1 exhibits acceptable swelling, much higher proton conductivity, and lower methanol permeability than commercial Nafion 115, implying potential application in direct methanol fuel cells. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 200–207  相似文献   

13.
There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.  相似文献   

14.
Developing new materials for the fabrication of proton exchange membranes (PEMs) for fuel cells is of great significance. Herein, a series of highly crystalline, porous, and stable new covalent organic frameworks (COFs) have been developed by a stepwise synthesis strategy. The synthesized COFs exhibit high hydrophilicity and excellent stability in strong acid or base (e.g., 12 m NaOH or HCl) and boiling water. These features make them ideal platforms for proton conduction applications. Upon loading with H3PO4, the COFs (H3PO4@COFs) realize an ultrahigh proton conductivity of 1.13×10?1 S cm?1, the highest among all COF materials, and maintain high proton conductivity across a wide relative humidity (40–100 %) and temperature range (20–80 °C). Furthermore, membrane electrode assemblies were fabricated using H3PO4@COFs as the solid electrolyte membrane for proton exchange resulting in a maximum power density of 81 mW cm?2 and a maximum current density of 456 mA cm?2, which exceeds all previously reported COF materials.  相似文献   

15.
We investigated thermal properties of proton exchange membranes (PEMs) prepared by the radiation-induced grafting of styrene into crosslinked-polytetrafluoroethylene films and the subsequent sulfonation for fuel-cell applications. A conventional thermogravimetric analysis was found to be unreliable because the resulting curve varied greatly with the heating rate. Thus, in order to obtain accurate information, we performed an ex-situ heat-treatment analysis, which involved heating of the PEMs at fixed temperatures of 200-350 °C and measurement of their remaining weight, ion exchange capacity (IEC) and proton conductivity (σ) after washing in pure water. The IEC and σ did not change at any temperature up to 200 °C, indicating high thermal stability. At 250 °C, however, the PEM properties deteriorated probably via radical cleavage of the C-S bond between a sulfonic acid group and an aromatic ring, and condensation of two sulfonic acid groups. Finally, the PEM was hot-pressed with two electrodes at 200 °C to produce a good membrane-electrode assembly for a fuel cell.  相似文献   

16.
The major risk of using carbon nanotubes (CNTs) to modify proton exchange membranes (PEMs) in fuel cells is possible short‐circuiting due to the excellent electrical conductivity of CNTs. In this article, silica‐coated CNTs (SiO2@CNTs) were successfully prepared by a simple sol–gel process and then used as a new additive in the preparation of sulfonated poly (ether ether ketone) (SPEEK)‐based composite membranes. The insulated and hydrophilic silica coated on the surface of CNTs not only eliminated the risk of short‐circuiting, but also enhanced the interfacial interaction between CNTs and SPEEK, and hence promoted the homogeneous dispersion of CNTs in the SPEEK matrix. Moreover, compared to the methanol permeability of the pure SPEEK membrane (3.42 × 10?7 cm2 s?1), the SPEEK/SiO2@CNT composite membrane with a SiO2@CNT loading of 5 wt% exhibits almost one order of magnitude decrease of methanol crossover, while the proton conductivity still remained above 10?2 S cm?1 at room temperature. The obtained results expose the possibility of SPEEK/SiO2@CNT membranes to be served as high‐performance PEMs in direct methanol fuel cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A novel sulfonated poly(arylene ether) containing tetraphenylmethane moieties was successfully synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place only at the para position on the pendant phenyl rings because of the specially designed parent polymer. The sulfonation degree can be easily controlled by using different ratios of sulfonation agent to polymer repeating unit. The position and degree of sulfonation were characterized by 1H NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N′‐dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the membrane exhibited superior stability to oxidation. The proton conductivities of the films were determined to be equivalent with Nafion® 117 under same conditions. The new polymer with sulfonic acid function on pendent phenyl rings can be potentially used as a proton‐exchange membrane for polymer electrolyte membrane fuel cell. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6411–6418, 2005  相似文献   

18.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

19.
An aromatic polymer, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonate with different sulfonation degrees (30, 50, and 75?% theoretical degree) to obtain an electrolytic polymer suitable as proton exchange membrane for fuel cells. Thermal behaviors of sulfonated PPO were tested by differential scanning calorimetry and thermogravimetry. The sulfonation degrees were correlated with glass transitions temperatures (T g) and the percent of weight loss. One notices a good fitting between sulfonation degree and the percent of weight loss thanks splitting of sulfonic moieties but it is not the same for glass transition temperatures that have a random variation.  相似文献   

20.
The development of cheap and efficient proton conducting polymers attracts scientists' attention, resulting in its potential role in fuel cell applications. This work synthesized a novel cellulose acetate-g-poly(sodium 4-styrene sulfonate) via free radical polymerization using potassium persulfate (KPS) as an initiator. The effects of varying KPS concentration, cellulose acetate (CA), sodium 4-styrene sulfonate (Na-SSA) content, reaction time, and temperature on the grafting parameters were studied. Grafting parameters, including the grafting yield (GY %), Add-on (%) and grafting efficiency (GE %) of the grafting reaction, were evaluated. Additionally, FTIR, TGA, DSC, 1HNMR and EDX analyses were studied. The developed graft copolymers membranes illustrated increased water uptake values and ion exchange capacity (IEC) with the add-on (%). Furthermore, the proton conductivity of the developed graft copolymers was found superior (4.77 × 10−3 S.cm−1) to the pristine CA membrane (0.035 × 10−3 S.cm−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号