首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shaohua Gou  Xin Zhou 《Tetrahedron》2007,63(33):7935-7941
A new self-assembled catalyst based on titanium complex has been developed for the effective enantioselective cyano-ethoxycarbonylation of aldehydes. The self-assembled catalyst was readily prepared from (R)-3,3′-bis((methyl((S)-1-phenylethyl)amino)methyl)-1,1′-binaphthyl-2,2′-diol (1h), N-((1S,2R)-2-hydroxy-1,2-diphenylethyl)acetamide (2b), and tetraisopropyl titanate (Ti(OiPr)4). A variety of aromatic aldehydes, aliphatic aldehydes, and α,β-unsaturated aldehydes were found to be suitable substrates in the presence of the self-assembled titanium catalyst (5 mol % 1h, 5 mol % 2b, and 5 mol % Ti(OiPr)4). The desired cyanohydrin ethyl carbonates were afforded with high isolated yields (up to 95%) and moderate to good enantioselectivities (up to 92% ee) under mild conditions (at −15 °C). A possible catalytic cycle based on the experimental observation was proposed.  相似文献   

2.
Novel aza-paracyclophane-oxazoline catalysts 4, 5 were produced from Vögtle’s Rp-2-cyano-aza-paraclycophane and amino alcohols reacted with zinc chloride followed by m-chloroperbenzoic acid. 4′-Benzyl and tert-butyl-S and R-oxazoline variants were produced and explored as catalysts for asymmetric allylation of aldehydes using trichloroallylsilane. With Rp,S-4a (R = tert-butyl) (1.5 mol %) aromatic aldehydes reacted with high yields and selectivities, as with benzaldehyde (95%, 93% ee). Rp,S-4b (R = benzyl) was superior with dihydrocinnamaldehyde (77%, 85% ee).  相似文献   

3.
The nucleophilic substitution reaction of S2O32− with [Ru(HaaiR′)2(OH2)2](ClO4)2 (1) [HaaiR′ = 1-alkyl-2-(phenylazo)imidazole] and [Ru(ClaaiR′)2(OH2)2](ClO4)2 (2) [ClaaiR′ = 1-alkyl-2-(chlorophenylazo)imidazole] [where R′ = Me(a), Et(b) or Bz(c)] in acetonitrile–water (50% v/v) medium to yield Na2[Ru(HaaiR′)2(S2O3)2] (3a, 3b or 3c) and Na2[Ru(ClaaiR′)2(S2O3)2] (4a, 4b or 4c) has been studied. The products were characterized by microanalytical data and spectroscopic techniques (UV–Vis, NMR and mass spectroscopy). The reaction proceeds in two consecutive steps (A → B → C); each step follows first order kinetics with respect to each complex and S2O32−, and the first step second order rate constant (k2) is greater than the second step one (k2). An increase in the π-acidity of the ligand increases the rate. Thermodynamic parameters, the standard enthalpy of activation (ΔH0) and the standard entropy of activation (ΔS0), have been calculated for both steps using the Eyring equation from variable temperature kinetic studies. The low ΔH0 and large negative ΔS0 values indicate an associative mode of activation for both aqua ligand substitution processes.  相似文献   

4.
β-CF3-α,β-diphenylvinyl sulfide 3a was prepared stereoselectively in 77% yield from the reaction of 2 with phenyllithium at room temperature for 5 h. Oxidation of 3a with MCPBA afforded the corresponding vinyl sulfone 4a, in which (E)-4a can be crystallized in a mixture of CH2Cl2 and hexane. The addition-elimination reaction of (E)-4a with phenyllithium having substituents on the benzene ring provided 5a-j in 51-82% yields stereospecifically. Similarly, the treatment of (E)-4a with p-chloroethoxyphenyllithium in the presence of 12-crown-4 (20 mol %) at −10 °C, followed by slowly warming to room temperature, resulted in the formation of the corresponding panomifene precursor 6 in 82% yield.  相似文献   

5.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

6.
(S)-N-Ferrocenoyl-2-[(diphenylphosphino)methyl]-pyrrolidine 3 was conveniently prepared from commercially available l-proline and ferrocenecarboxylic acid. In the presence of a catalytic amount of chiral ligand 3 (4 mol %) and Cu(OTf)2 (3 mol %), the asymmetric addition of diethylzinc to N-sulfonylimines was achieved in 57-99% yield with up to 88% ee.  相似文献   

7.
By using a direct ortho-lithiation, the ligands (S)-3-methoxymethyl-1,1′-bi-2-naphthol [(S)-1], (S)-3,3′-bis(methoxymethyl)-1,1′-bi-2-naphthol [(S)-2], (S)-3-(quinolin-2-yl)-1,1′-bi-2-naphthol [(S)-3] and (S)-3,3′-bis(quinolin-2-yl)-1,1′-bi-2-naphthol [(S)-4] have been synthesized. (S)-1 and (S)-3 show moderate catalytic properties for the asymmetric diethylzinc addition to aromatic aldehydes.  相似文献   

8.
Linglin Wu 《Tetrahedron》2008,64(11):2651-2657
A chiral polymer ligand was synthesized by the polymerization of (S)-5,5′-dibromo-6,6′-dibutyl-2,2′-binaphthol (S-M-1) with (S)-2,2′-bishexyloxy-1,1′-binaphthyl-6,6′-boronic acid (S-M-2) via Pd-catalyzed Suzuki reaction. The application of the chiral polymer ligand to the asymmetric addition of phenylethynyl zinc to various aldehydes has been studied. The results show that the soluble chiral polybinaphthols ligand in combination with Et2Zn and Ti(OiPr)4 can exhibit excellent enantioselectivity for phenylacetylene addition to both aromatic and aliphatic aldehydes. The catalytically active center of the repeating unit S-1 used as a catalyst produced the opposite configuration of the propargylic alcohols to that of S-1, on the contrary, the chiral polymer gave the same configuration as the optically active binaphthol moiety of the polybinaphthols ligand. Moreover, the chiral polymer ligand can be easily recovered and reused without loss of catalytic activity as well as enantioselectivity.  相似文献   

9.
Sulfur analogues of the soluble guanylate cyclase (sGC) inhibitor NS2028 1a are synthesized. Treating 8-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one oxime (6) with 1,1′-thiocarbonyldiimidazole (1.1 equiv) gave the carbamothioate 8-bromo-4H-[1,2,4]oxadiazolo[3,4-c][1,4]benzoxazine-1-thione (3a) in 83% yield. Alternatively reacting NS2028 1a with P2S5 (0.5 equiv) affords the carbamothioate 3a in 80% yield. Similar treatment of 8-aryl substituted NS2028 analogues 1b-d with P2S5 gave the carbamothioates 3b-d in 64-91% yields. Although quite stable, the carbamothioates 3a-d could be thermally isomerized in the presence of Cu (10 mol %) to afford the thiocarbamates 4a-d in high yields. Interestingly, in the case of carbamothioate 3a Pd and In metals also facilitated the isomerization. Furthermore, treatment of the thiocarbamates 4a-d with P2S5 (0.5 equiv) affords the carbamodithioates 5a-d in 72-89% yields. All new compounds are fully characterized including single crystal X-ray data for carbamothioate 3a and thiocarbamate 4a. Finally, a mechanism is proposed for the carbamothioate to thiocarbamate isomerization.  相似文献   

10.
A series of chiral C1- and C2-symmetric ferrocenyl Schiff bases (1a-c), ferrocenyl aminoalcohols (2a), ferrocenylphosphinamides (2b-c), 1,1′-ferrocenyl-diol (3), and 1,1′-ferrocenyl-disulfonamide (4) were prepared and employed as base catalysts or as ligand for titanium(IV) complexes in the asymmetric addition of diethylzinc to aromatic aldehydes. High enantioselectivity up to almost 100% ee was achieved for the alkylation of benzaldehyde and p-methoxybenzaldehyde with 1 or 3. In contrast, however, the β-aminoalcohol (2a) and phosphinamides (2b and c) that are ubiquitous classes of base catalysts for this reaction proved inefficient in our hands, regardless of the types of substrates or reaction conditions. Comparative studies show that there exist various reaction parameters governing not only chemical yields but also optical yields. These include steric and electronic environment of the substrate, the solvent, the reaction temperature, and the nature of the ferrocene moieties.  相似文献   

11.
Yong-Gang Wang 《Tetrahedron》2007,63(26):6042-6050
Chiral phase-transfer catalysts (S)-1a, (S)-1b, and (S)-2 with conformationally fixed biphenyl cores were conveniently prepared from the known, easily available (S)-6,6′-dimethylbiphenyl-2,2′-diol 3 and (S)-4,5,6,4′,5′,6′-hexamethoxybiphenyl-2,2′-dicarboxylic acid 14, respectively, in five steps. The catalysts, (S)-1a and (S)-1b are readily applicable to asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester with excellent enantioselectivity. In particular, catalyst (S)-1b was found to exhibit the unique temperature effect on the enantioselectivity, and asymmetric alkylation of glycine derivatives at room temperature gave higher enantiomeric excess than that at 0 °C. In addition, the catalyst (S)-2 exhibited the high catalytic performance (0.01-1 mol %) in the asymmetric alkylation of N-(diphenylmethylene)glycine tert-butyl ester and N-(p-chlorophenylmethylene)alanine tert-butyl ester compared to the existing chiral phase-transfer catalysts, thereby allowing to realize a general and useful procedure for highly practical enantioselective synthesis of structurally diverse natural and unnatural α-alkyl-α-amino acids as well as α,α-dialkyl-α-amino acids. This approach is successfully applied to the short asymmetric synthesis of cell adhesion BIRT-377.  相似文献   

12.
Neutral palladium methyl chloride 2a-d [PdCH3(PˆP′)Cl] and cationic palladium methyl acetonitrile mono-triflate 3a-d [PdCH3(PˆP′)(CH3CN)](CF3SO3) complexes were synthesized and fully characterized (PˆP′ = 1a-d). All the neutral and cationic complexes containing a Cs-symmetric diphosphine exist in solution as a mixture of geometric isomers. The carbonylation at atmospheric pressure of the neutral and cationic complexes revealed that migratory insertion of carbon monoxide is not stereospecific in these systems. The neutral and cationic acyl complexes were formed in situ as mixtures of stereoisomers, which were characterized by means of NMR spectroscopy.The crystal structures of [Pd(1a)Cl]2(OTf)2 and 2d are described.  相似文献   

13.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

14.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

15.
The organocatalytic activity of (S)-proline-based dipeptides 1a-c has been evaluated in the asymmetric aldol reaction between representative ketones with various aromatic aldehydes under solvent-free conditions in a ball mill. In particular, the methyl ester of (S)-proline-(S)-tryptophan, (S,S)-1c, proved to be an efficient organocatalyst, and the aldol reaction proceeded with good chemical yields and excellent diastereo- and enantioselectivity (up to 98:2 anti/syn dr and up to 98% ee), in the presence of water, and 5 mol % of benzoic acid as additive.  相似文献   

16.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

17.
N,N′,N′′,N′′′-Tetrakis(3-carboxy-propionyl)-1,6,20,25-tetraaza-[6.1.6.1] paracyclophane, H4cp has been complexed with metal (Zn(II) and Cd(II)) 2,2-bipyridyls. The resulting complexes of the composition [{Zn(2,2-bpy)}2(cp)]n·4H2O 1 and [{Cd(2,2-bpy)}2(cp)]n·5H2O 2 (2,2-bpy = 2,2-bipyridine) have been characterized using spectroscopic (IR, solid state UV–Vis), elemental analysis and single-crystal X-ray diffraction measurements. In these complexes the cyclophane coordinates in different modes, and in complex 2, Cd(II) is hepta-coordinated. However, under harsh reaction conditions (using excess nitric acid and a longer reaction time) debranching of the cyclophane is observed in the reaction of Zn(2,2-bpy)(NO3)2 with H4cp, and a complex of the composition [Zn(2,2-bpy)(Suc)]n3 (suc = succinate) is isolated. Using non-covalent interactions, complexes 1 and 2 provide 3D supramolecular structures, whereas an infinite 1D chain structure is observed for complex 3. The thermal and photoluminescence properties of the complexes have also been studied.  相似文献   

18.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

19.
The use of KBH4-MgCl2 to reduce carboxylic acids and their derivatives to the corresponding alcohols or the respective reduced products is described. Methyl (S)-3,4-O-isopropylidene-3,4-dihydroxy butanoate 2 used as a reference substrate was reduced with KBH4 and MgCl2 in 1:1 mol ratio to (S)-1,2-O-isopropylidene-1,2,4-butanetriol 1.  相似文献   

20.
A series of chiral organotin halides containing 2-(4-R)-oxazolinyl-o-carboranes (R = i-propyl 1, t-butyl 2; CabOxa) was prepared from o-carborane with a chiral oxazoline auxiliary. X-ray structural analysis of the representative chiral organotin halide, [2-(4-i-propyl)-oxazolinyl-o-carboranyl]SnMe2Br (4), revealed the formation of a stable penta-coordinated tin center due to a N → Sn interaction. Similar O → Sn assisted intramolecular penta-coordinated tin complexes (9 and 10) were prepared from methoxy-o-carborane ligands, MeOCH(Z)-o-carborane (Z = H 7, Ph 8; CabOMe), respectively, and a rigid o-carboranyl backbone provided the basic skeleton for the facile formation of organotin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号