首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorption rates onto a range of platinum single-crystal surfaces of key species involved in the proline-directed heterogeneous enantioselective hydrogenation of isophorone were investigated by electrochemical means. Specifically, the uptakes of the prochiral reactant (isophorone), the chiral hydrogenation product (3,3,5-trimethylcyclohexanone), and the chiral directing agent ((R)- and (S)-proline) were examined. The effects of R,S chiral kink sites on the adsorption of (R,S)-proline were also studied. The reactant adsorbs approximately 105 times faster than the chiral modifier so that under conditions of competitive adsorption the latter is entirely excluded from the metal surface. Supplementary displacement and reaction rate measurements carried out with practical Pd/carbon catalysts show that under certain reaction conditions isophorone quickly displaces preadsorbed proline from the metal surface. Thus both kinetics and thermodynamics ensure that the chiral modifier can play no role in any surface-mediated process that leads to enantiodifferentiation. These results are fully consistent with the recent proposal1 that the crucial step leading to enantiodifferentiation occurs in the solution phase and not at the metal surface. In addition, it is found that there is no preferred diastereomeric interaction between (R,S)-proline and R,S step kink sites on Pt{643} and Pt{976}, implying that such sites do not play a role in determining the catalytic behavior of supported metal nanoparticles.  相似文献   

2.
The sonochemical asymmetric hydrogenation of isophorone (3,3,5-trimethyl-2-cyclohexenone) by proline-modified Pd/Al2O3 catalysts is described; presonication of a commercial Pd/Al2O3-proline catalytic system resulted in highly enhanced enantioselectivities (up to 85% ee).  相似文献   

3.
[reaction: see text] It was found that the chemoselectivity could be completely switched from C=O to C=C bonds in the transfer hydrogenation of activated alpha,beta-unsaturated ketones catalyzed by diamine-ruthenium complex. Moreover, this addition via metal hydride had been applied to the reduction of various activated olefins. The electron-withdrawing ability of functional groups substituted on C=C bonds at the alpha- or beta-position had strong influence on the reactivity. In addition, a wide variety of chiral diamine-Ru(II)-(arene) systems was investigated to explore the asymmetric transfer hydrogenation of prochiral alpha,alpha-dicyanoolefins. Two parameters had been systematically studied, (i) the structure of the N-sulfonylated chiral diamine ligands, in which several chiral diamines substituted on the benzene ring of DPEN were first reported, and (ii) the structure of the metal precursors, and high enantioselectivitiy (up to 89% ee) at the beta-carbon was obtained.  相似文献   

4.
Aromatic nitriles are not only important components of natural products, pharmaceuticals, herbicides and agrochemicals but also a synthetic equivalent of various functionalities. The development of synthetic methods of aromatic nitriles have been increasing in terms of its usefulness. Since aromatic nitriles are susceptible to the hydrogenation, it has been desired for the development of chemoselective hydrogenation method with retention of nitrile groups. Pd/C is one of the most popular catalysts for hydrogenation and many of reducible functional groups such as multiple bonds, benzyl ethers, N-Cbzs, nitro groups and so on could be easily reduced under the conditions. Therefore, it is very difficult to achieve the chemoselective hydrogenation of substrates containing two or more reducible functional groups. We have found that a Pd/C catalyst formed an isolable complex with ethylenediamine (en) employed as catalytic poison, and the complex [Pd/C(en)] catalyzed chemoselective hydrogenation of a variety of reducible functionalities distinguishing O-benzyl, N-Cbz and O-TBDMS protective groups, benzyl alcohols and epoxides. In the course of these investigations, we found the aryl nitriles could survive under the Pd/C(en)-catalyzed hydrogenation conditions in THF whose choice is important for the effective suppression. This methodology could be applied to the selective hydrogenation of alkene and alkyne functionalities in the presence of aromatic nitrile.  相似文献   

5.
Akinori Mori 《Tetrahedron》2006,62(51):11925-11932
While Pd/C is one of the most useful catalysts for hydrogenation, the high catalyst activity of Pd/C causes difficulty in its application to chemoselective hydrogenation between different types of reducible functionalities. In order to achieve chemoselective hydrogenation using Pd/C, we investigated catalyst poison as a controller of the catalyst activity. We found that the addition of Ph2S (diphenylsulfide) to the Pd/C-catalyzed hydrogenation reaction mixture led to reasonable deactivation of Pd/C. By the use of the Pd/C-Ph2S catalytic system, olefins, acetylenes, and azides can be selectively reduced in the coexistence of aromatic carbonyls, aromatic halides, cyano groups, benzyl esters, and N-Cbz (benzyloxycarbonyl) protecting groups. The present method is promising as a general and practical chemoselective hydrogenation process in synthetic organic chemistry.  相似文献   

6.
A chiral cobalt pincer complex, when combined with an achiral electron-rich mono-phosphine ligand, catalyzes efficient asymmetric hydrogenation of a wide range of aryl ketones, affording chiral alcohols with high yields and moderate to excellent enantioselectivities (29 examples, up to 93% ee). Notably, the achiral mono-phosphine ligand shows a remarkable effect on the enantioselectivity of the reaction.  相似文献   

7.
A new mechanism for the title reaction is proposed, in which reduction by [Co(dmg)2] and introduction of chirality by quinine are completely separated steps. Experimental support for this idea is presented.
, [Co(dmg)2] . .
  相似文献   

8.
9.
The reverse-docking of a TADDOL organocatalyst to rigid transition state models of catalyst-free reactions (TS-models) for an asymmetric hetero-Diels-Alder reaction is described. In previous reports, reverse-docking of similar organocatalysts to rigid TS-models showed promise for generating transition state models for the catalyzed reaction, and revealed clear energetic trends favoring the experimentally preferred product enantiomers. Although results indicated a mode of catalysis consistent with experimental data, relative docking energies between TS-model enantiomers were too great to allow for in silico correlation to experimentally observed enantiomeric excesses (ee). Several changes were made to the reverse-docking algorithm, EM-Dock, allowing for the first reported correlation to experimentally reported ee values based solely on reverse-docking and molecular mechanics energies.  相似文献   

10.
In the Pt-catalyzed hydrogenation of 1,1,1-trifluoro-2,4-diketones, addition of trace amounts of cinchonidine, O-methyl-cinchonidine, or (R,R)-pantoyl-naphthylethylamine induces up to 93% ee and enhances the chemoselectivity up to 100% in the hydrogenation of the activated carbonyl group to an OH function. A combined catalytic, NMR and FTIR spectroscopic, and theoretical study revealed that the two phenomena are coupled, offering the unique possibility for understanding the substrate-modifier-metal interactions. The high chemo- and enantioselectivities are attributed to the formation of an ion pair involving the protonated amine function of the chiral modifier and the enolate form of the substrate. DFT calculations including the simulation of the interaction of a protonated amine with the enolate adsorbed on a Pt 31 cluster revealed that only the C-O bond next to the CF3 group of the substrate is in direct contact with Pt and can be hydrogenated. The present study illustrates the fundamental role played by the metal surface and indicates that also the enol form can be the reactive species in the hydrogenation of the activated ketone on chirally modified Pt.  相似文献   

11.
A series of new phosphine-phosphite ligands P(C)(n)OP (n = 1-4) have been synthesized and used for rhodium-catalyzed asymmetric hydrogenation of prochiral olefins in order to study the effect of the chelate ring size. Excellent ees (up to 97.5%) were obtained in the hydrogenation of dimethyl itaconate and an increase of activity and enantioselectivity was observed in the hydrogenation of (Z)-α-acetamidocinnamic acid methyl ester with the increasing length of the backbone of the ligands.  相似文献   

12.
The rate of the Pd/C catalyzed Heck coupling of Ar-I with CH(2)=CH-R is accelerated tenfold by the presence of Aliquat 336 (A336), a well known phase transfer catalyst, and an ionic liquid. Both when conducted in A336 as solvent, and in an isooctane/A336/aqueous triphasic mixture, the Heck reaction of aryl iodides with electron deficient olefins, catalyzed by Pd/C, proceeds with high yields and selectivity. When KOH is used instead of Et(3)N, selective formation of the biphenyl rather than the Heck product, is observed. Aryl bromides react more sluggishly, and only the more activated ones undergo the Heck reaction. In the absence of the olefin, aryl halides possessing an electron withdrawing group are reduced to the corresponding Ar-H.  相似文献   

13.
Asymmetric hydrogenation of acetophenone with trans-RuH(eta(1)-BH(4))[(S)-tolbinap][(S,S)-dpen] (TolBINAP = 2,2'-bis(di-4-tolylphosphino)-1,1'-binaphthyl; DPEN = 1,2-diphenylethylenediamine) in 2-propanol gives (R)-phenylethanol in 82% ee. The reaction proceeds smoothly even at an atmospheric pressure of H(2) at room temperature and is further accelerated by addition of an alkaline base or a strong organic base. Most importantly, the hydrogenation rate is initially increased to a great extent with an increase in base molarity but subsequently decreases. Without a base, the rate is independent of H(2) pressure in the range of 1-16 atm, while in the presence of a base, the reaction is accelerated with increasing H(2) pressure. The extent of enantioselection is unaffected by hydrogen pressure, the presence or absence of base, the kind of base and coexisting metallic or organic cations, the nature of the solvent, or the substrate concentrations. The reaction with H(2)/(CH(3))(2)CHOH proceeds 50 times faster than that with D(2)/(CD(3))(2)CDOD in the absence of base, but the rate differs only by a factor of 2 in the presence of KO-t-C(4)H(9). These findings indicate that dual mechanisms are in operation, both of which are dependent on reaction conditions and involve heterolytic cleavage of H(2) to form a common reactive intermediate. The key [RuH(diphosphine)(diamine)](+) and its solvate complex have been detected by ESI-TOFMS and NMR spectroscopy. The hydrogenation of ketones is proposed to occur via a nonclassical metal-ligand bifunctional mechanism involving a chiral RuH(2)(diphosphine)(diamine), where a hydride on Ru and a proton of the NH(2) ligand are simultaneously transferred to the C=O function via a six-membered pericyclic transition state. The NH(2) unit in the diamine ligand plays a pivotal role in the catalysis. The reaction occurs in the outer coordination sphere of the 18e RuH(2) complex without C=O/metal interaction. The enantiofaces of prochiral aromatic ketones are kinetically differentiated on the molecular surface of the coordinatively saturated chiral RuH(2) intermediate rather than in a coordinatively unsaturated Ru template.  相似文献   

14.
The recently described method of combinatorial asymmetric transition metal catalysis based on the use of mixtures of chiral monodentate P-ligands has been extended to include mixtures of chiral and achiral monodentate P-ligands, reversal of enantioselectivity in Rh-catalyzed olefin hydrogenation being possible in appropriate cases.  相似文献   

15.
This communication describes the enhancement of the enantioselectivity and the stability of Ru-BINAP with the ionic liquid trihexyl(tetradecyl)phosphonium chloride (CyPhos101), and the use of organic solvent nanofiltration for the efficient separation of the catalyst and ionic liquid from the hydrogenation product, followed by simultaneous recycling of the catalyst and ionic liquid.  相似文献   

16.
Preliminary studies of the elementary steps involved in the reaction of a chiral methyl carbonyl bioxazoline Pd(II) complex with aromatic olefins and CO have allowed development of a new enantioselective catalytic carbonylation process, leading to γ-ketoester derivatives with high yield and good enantiomeric excess. The intermediate palladacycle complexes have been isolated and characterized by NMR spectroscopy and X-ray diffraction. Factors that govern the stereoselectivity of the olefin carbonylation process are discussed.  相似文献   

17.
The effects of the preliminary hydrogenation, the variation of the addition sequence of the components and that of the sonochemical treatment were investigated in enantioselective hydrogenation of isophorone over Pd black catalyst in the presence of chiral modifiers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
A series of diphenyl-sulfide(Ph2S)-immobilized Pd/C catalysts(Pd-Ph2S(X)/C) were prepared using the wetness-impregnation and immobilization method.Pd-Ph2S(x)w/C catalysts employed for the hydrogenation of o-chloronitrobenzene showed very high selectivity.The structure of Pd-Ph2S(x)/C with different molar ratio of ligand(x-values) was characterized by XPS and TG-DSC-MS.The results suggest a "saturated" surface ratio of Ph2S/Pd(about 0.3) was formed on the Pd-Ph2S(x)/C catalysts surface.The Ph2S immobilized on the Pd particle is quite stable,and the desorption of Ph2S or dissociative loss of phenyl group was only found at temperatures above 500 K.The possible catalytic mechanism of the Pd-Ph2S(x)/C catalyst was also discussed.  相似文献   

19.
Continuous flow of the substrate solution and hydrogen gas through a tube reactor packed with Pd/C catalyst brings about a highly reactive and efficient hydrogenation system, which converts 4-cyanobenzaldehyde to the benzyl alcohol derivatives at 25 degrees C, and at 90 degrees C, the cyano group becomes reduced to give the corresponding amine and toluene derivatives within 2 min.  相似文献   

20.
C 1-Symmetric phosphino/phosphonite ligands are prepared by the reactions of Ph 2P(CH 2) 2P(NMe 2) 2 with ( S)-1,1'-bi-2-naphthol (to give L A ) or ( S)-10,10'-bi-9-phenanthrol (to give L B ). Racemic 10,10'-bi-9-phenanthrol is synthesized in three steps from phenanthrene in 44% overall yield. The complexes [PdCl 2( L A,B )] ( 1a, b), [PtCl 2( L A,B )] ( 2a, b), [Rh(cod)( L A,B )]BF 4 ( 3a, b) and [Rh( L A,B ) 2]BF 4 ( 4a, b) are reported and the crystal structure of 1a has been determined. A (31)P NMR study shows that M, a 1:1 mixture of the monodentates, PMePh 2 and methyl monophosphonite L 1a (based on ( S)-1,1 '-bi-2-naphthol), reacts with 1 equiv of [Rh(cod) 2]BF 4 to give the heteroligand complex [Rh(cod)(PMePh 2)( L 1a )]BF 4 ( 5) and homoligand complexes [Rh(cod)(PMePh 2) 2]BF 4 ( 6) and [Rh(cod)( L 1a ) 2]BF 4 ( 7) in the ratio 2:1:1. The same mixture of 5- 7 is obtained upon mixing the isolated homoligand complexes 6 and 7 although the equilibrium is only established rapidly in the presence of an excess of PMePh 2. The predominant species 5 is a monodentate ligand complex analogue of the chelate 3a. When the mixture of 5- 7 is exposed to 5 atm H 2 for 1 h (the conditions used for catalyst preactivation in the asymmetric hydrogenation studies), the products are identified as the solvento species [Rh(PMePh 2)( L 1a )(S) 2]BF 4 ( 5'), [Rh(S) 2(PMePh 2) 2]BF 4 ( 6') and [Rh(S) 2( L 1a ) 2]BF 4 ( 7') and are formed in the same 2:1:1 ratio. The reaction of M with 0.5 equiv of [Rh(cod) 2]BF 4 gives exclusively the heteroligand complex cis-[Rh(PMePh 2) 2( L 1a ) 2]BF 4 ( 8), an analogue of 4a. The asymmetric hydrogenation of dehydroamino acid derivatives catalyzed by 3a, b is reported, and the enantioselectivities are compared with those obtained with (a) chelate catalysts derived from analogous diphosphonite ligands L 2a and L 2b , (b) catalysts based on methyl monophosphonites L 1a and L 1b , and (c) catalysts derived from mixture M. For the cinnamate and acrylate substrates studied, the catalysts derived from the phosphino/phosphonite bidentates L A,B generally give superior enantioselectivities to the analogous diphosphonites L 2a and L 2b ; these results are rationalized in terms of delta/lambda-chelate conformations and allosteric effects of the substrates. The rate of hydrogenation of acrylate substrate A with heterochelate 3a is significantly faster than with the homochelate analogues [Rh( L 2a )(cod)]BF 4 and [Rh(dppe)(cod)]BF 4. A synergic effect on the rate is also observed with the monodentate analogues: the rate of hydrogenation with the mixture containing predominantly heteroligand complex 5 is faster than with the monophosphine complex 6 or monophosphonite complex 7. Thus the hydrogenation catalysis carried out with M and [Rh(cod) 2]BF 4 is controlled by the dominant and most efficient heteroligand complex 5. In this study, the heterodiphos chelate 3a is shown to be more efficient and gives the opposite sense of optical induction to the heteromonophos analogue 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号