首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed "design and selection," new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.  相似文献   

2.
Here we report the in vitro selection of fast ribozymes capable of promoting the synthesis of a purine nucleotide (6-thioguanosine monophosphate) from tethered 5-phosphoribosyl 1-pyrophosphate (PRPP) and 6-thioguanine ((6S)Gua). The two most proficient purine synthases have apparent efficiencies of 284 and 230 M(-1) min(-1) and are both significantly more efficient than pyrimidine nucleotide synthase ribozymes selected previously by a similar approach. Interestingly, while both ribozymes showed good substrate discrimination, one ribozyme had no detectable affinity for 6-thioguanine while the second had a K(m) of approximately 80 muM, indicating that these ribozymes use considerably different modes of substrate recognition. The purine synthases were isolated after 10 rounds of selection from two high-diversity RNA pools. The first pool contained a long random sequence region. The second pool contained random sequence elements interspersed with the mutagenized helical elements of a previously characterized 4-thiouridine synthase ribozyme. While nearly all of the ribozymes isolated from this biased pool population appeared to have benefited from utilizing one of the progenitor's helical elements, little evidence for more complicated secondary structure preservation was evident. The discovery of purine synthases, in addition to pyrimidine synthases, demonstrates the potential for nucleotide synthesis in an 'RNA World' and provides a context from which to study small molecule RNA catalysis.  相似文献   

3.
《Chemistry & biology》1997,4(8):607-617
Background: The protein enzymes RNA ligase and DNA ligase catalyze the ligation of nucleic acids via an adenosine-5′-5′-pyrophosphate ‘capped’ RNA or DNA intermediate. The activation of nucleic acid substrates by adenosine 5′-monophosphate (AMP) may be a vestige of ‘RNA world’ catalysis. AMP-activated ligation seems ideally suited for catalysis by ribozymes (RNA enzymes), because an RNA motif capable of tightly and specifically binding AMP has previously been isolated.Results: We used in vitro selection and directed evolution to explore the ability of ribozymes to catalyze the template-directed ligation of AMP-activated RNAs. We subjected a pool of 1015 RNA molecules, each consisting of long random sequences flanking a mutagenized adenosine triphosphate (ATP) aptamer, to ten rounds of in vitro selection, including three rounds involving mutagenic polymerase chain reaction. Selection was for the ligation of an oligonucleotide to the 5′-capped active pool RNA species. Many different ligase ribozymes were isolated; these ribozymes had rates of reaction up to 0.4 ligations per hour, corresponding to rate accelerations of ∼ 5 × 105 over the templated, but otherwise uncatalyzed, background reaction rate. Three characterized ribozymes catalyzed the formation of 3′-5′-phosphodiester bonds and were highly specific for activation by AMP at the ligation site.Conclusions: The existence of a new class of ligase ribozymes is consistent with the hypothesis that the unusual mechanism of the biological ligases resulted from a conservation of mechanism during an evolutionary replacement of a primordial ribozyme ligase by a more modern protein enzyme. The newly isolated ligase ribozymes may also provide a starting point for the isolation of ribozymes that catalyze the polymerization of AMP-activated oligonucleotides or mononucleotides, which might have been the prebiotic analogs of nucleoside triphosphates.  相似文献   

4.
5.
A versatile parallel solid-phase combinatorial strategy was developed for the synthesis of large nucleoside libraries. Twelve libraries L1-12 of 1152 novel exocyclic triazinylamino nucleosides and one library L13 of 82 new substituted clitocine derivatives were synthesized in high quality as natural product mimic nucleosides on the semi-automated synthesizer. The polystyrene MMT-Cl resin was selected and utilized. The key intermediate resins 5 and 9 loaded with the corresponding scaffolds were prepared and validated with various amines before parallel synthesis. After a variety of amino building blocks were validated, 56 primary amines in 12 groups (building block set A) and 24 secondary amines in 3 groups (building block set B) were selected and utilized to combinatorialize the first and the second reactive sites on scaffold 5 for the synthesis of libraries L1-12. Eighty-two amines (building block set C) were utilized for the synthesis of clitocine library L13. Thirteen libraries of 1234 novel exocyclic amino nucleosides were all analyzed and characterized by high throughput LC-MS. 81.3-100% of the library members in 13 libraries show more than 60% purity, and 65.7-92.7% of the library members in these libraries show 80-100% purity. The strategy can be widely used for the synthesis of other diverse nucleoside libraries.  相似文献   

6.
7.
A practical approach towards N‐glycopeptide synthesis using an auxiliary‐mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N‐linked glycosyl auxiliary to the thioester side chain of an N‐terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C‐terminal thioester oligopeptide. Mild cleavage provides the desired N‐glycopeptide.  相似文献   

8.
A micrometric silica modified with perylene derivative (SiO2–TES) has been prepared by hydrolysis–condensation reactions between silica and N,N’-bis-(3-triethoxysilylpropyl)-perylene-tetracarboxyldiimide (P-TES) and utilized as filler in LLDPE films together with a compatibilizer. Spectroscopic analyses on SiO2–TES confirmed the grafting of P-TES on silica, while its amount was determined by thermogravimetric analysis. Solid state NMR provided information about the structure of silicon atoms involved in the condensation of SiO2 and P-TES that resulted mainly in silicon atoms grafted with bi-dentate anchorages.UV–Vis and fluorescence analyses carried out on P-TES showed the ability of the dye to generate J-type aggregates in apolar solvents. The same analyses on SiO2–TES revealed the presence of both isolated and aggregated dye molecules grafted on silica surface, while on polymeric dispersions of SiO2–TES, they have shown only the presence of P-TES aggregates grafted to silica.Thanks to the direct correlation between optical properties (obtained both by UV–Vis and by fluorescence analyses) and the chemical environment of composites, the luminescent silica SiO2–TES could be used to estimate the filler dispersion extent in different microcomposite polymer materials.  相似文献   

9.

Background  

Low concentrations of free magnesium in the intracellular environment can present critical limitations for hammerhead ribozymes, especially for those that are designed for intermolecular (trans) cleavage of a host or pathogen RNA. Tertiary stabilizing motifs (TSM's) from natural and artificial ribozymes with a "type I" topology have been exploited to stabilize trans-cleaving hammerheads. Ribozymes with "type II" or "type III" topologies might seem incompatible with conversion to trans-cleavage designs, because opening the loop at the end of stem 1 or stem 2 to accommodate substrate binding is expected to disrupt the TSM and eliminate tertiary stabilization.  相似文献   

10.
Hausmannite Mn3O4 nanoparticles were successfully prepared via a facile one-step solvothermal route with Mn(CH3COO)2·4H2O as manganese source in the mixed solvent of acetone and water. Powder X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectrometry and transmission electron microscopy(TEM) were used to characterize Mn3O4 nanoparticles. It was found that the particle size could be tailored by varying the synthesis temperature. On the whole, the particle size becomes larger with the rising of solvothermal reaction temperature. But there is no linear relation between them. According to the different temperatures(60-140℃), the average particle size is from about 9 nm to 15 nm. Magnetic properties of Mn3O4 samples prepared at 60, 100 and 140℃ were studied via a superconducting quantum interference device(SQUID), respectively.  相似文献   

11.
《Chemistry & biology》1998,5(10):539-553
Background: One of the most significant questions in understanding the origin of life concerns the order of appearance of DNA, RNA and protein during early biological evolution. If an ‘RNA world’ was a precursor to extant life, RNA must be able not only to catalyze RNA replication but also to direct peptide synthesis. Iterative Iterative RNA selection previously identified catalytic RNAs (ribozymes) that form amide bonds between RNA and an amino acid or between two amino acids.Results: We characterized peptidyl-transferase reactions catalyzed by two different families of ribozymes that use substrates that mimic A site and P site tRNAs. The family II ribozyme secondary structure was modeled using chemical modification, enzymatic digestion and mutational analysis. Two regions resemble the peptidyl-transferase region of 23S ribosomal RNA in sequence and structural context; these regions are important for peptide-bond formation. A shortened form of this ribozyme was engineered to catalyze intermolecular (‘trans’) peptide-bond formation, with the two amino-acid substrates binding through an attached AMP or oligonucleotide moiety.Conclusions: An in vitro-selected ribozyme can catalyze the same type of peptide-bond formation as a ribosome; the ribozyme resembles the ribosome because a very specific RNA structure is required for substrate binding and catalysis, and both amino acids are attached to nucleotides. It is intriguing that, although there are many different possible peptidyl-transferase ribozymes, the sequence and secondary structure of one is strikingly similar to the ‘helical wheel’ portion of 23S rRNA implicated in ribosomal peptidyl-transferase activity.  相似文献   

12.
In connection with another study underway i n this lab we have been investigating the use of vinylogous thioester 1 as a synthon f o r sesquiterpene synthesis. We have found that 1 is useful for ring annelations and introduction of multiple substituents when pursuing carbocyclic synthesis. In recent studies with thioesters we have found that the lithium enolate of 1 (LDA/THF) will undergo 1,4-addition to Michael acceptors such as ethyl vinyl ketone (2, - EVK) in moderate yields (~60).  相似文献   

13.
The synthesis of a peptide selenoester was efficiently carried out by the 9‐fluorenylmethoxycarbonyl (Fmoc) method using N‐alkylcysteine, at the C‐terminus of the peptide, as the N‐to‐S acyl shift device. The selenoester selectively reacted with the terminal amino group of the peptide aryl thioester in the presence of N ,N ‐diisopropylethylamine and dipyridyldisulfide, thus leaving the aryl thioester intact. Combined with silver‐ion‐promoted and silver‐ion‐free thioester activation methods, a one‐pot four‐segment ligation was realized. The method was successfully used to assemble the entire sequence of superoxide dismutase (SOD), which is composed of 153 amino‐acid residues, in one pot. After the folding reaction, the fully active SOD was obtained.  相似文献   

14.
New symmetrical disulfides together with the corresponding thiols bearing fluorescent end-groups have been synthesized as building-blocks for self-assembled monolayers (SAMs). The synthesis has been accomplished starting from aromatic nitrogen heterocycles in three steps. The conversion of the tosylated intermediate into the final disulfide is accomplished by use of sodium hydrogen sulfide (NaSH). Both products (thiols and disulfides) were isolated and characterized.   相似文献   

15.
Kim DE  Joyce GF 《Chemistry & biology》2004,11(11):1505-1512
A self-replicating RNA ligase ribozyme was converted to a cross-catalytic format whereby two ribozymes direct each other's synthesis from a total of four component substrates. Each ribozyme binds two RNA substrates and catalyzes their ligation to form the opposing ribozyme. The two ribozymes are not perfectly complementary, as is the case for replicating nucleic acid genomes in biology. Rather, the ribozymes contain both template elements, which are complementary, and catalytic elements, which are identical. The specificity of the template interactions allows the cross-catalytic pathway to dominate over all other reaction pathways. As the concentration of the two ribozymes increases, the rate of formation of additional ribozyme molecules increases, consistent with the overall autocatalytic behavior of the reaction system.  相似文献   

16.
BACKGROUND: In vitro selected ribozymes with nucleotide synthase, peptide and carbon-carbon bond forming activity provide insight into possible scenarios on how chemical transformations may have been catalyzed before protein enzymes had evolved. Metabolic pathways based on ribozymes may have existed at an early stage of evolution. RESULTS: We have isolated a novel ribozyme that mediates Michael-adduct formation at a Michael-acceptor substrate, similar to the rate-limiting step of the mechanistic sequence of thymidylate synthase. The kinetic characterization of this catalyst revealed a rate enhancement by a factor of approximately 10(5). The ribozyme shows substrate specificity and can act as an intermolecular catalyst which transfers the Michael-donor substrate onto an external 20-mer RNA oligonucleotide containing the Michael-acceptor system. CONCLUSION: The ribozyme described here is the first example of a catalytic RNA with Michael-adduct forming activity which represents a key mechanistic step in metabolic pathways and other biochemical reactions. Therefore, previously unforeseen RNA-evolution pathways can be considered, for example the formation of dTMP from dUMP. The substrate specificity of this ribozyme may also render it useful in organic syntheses.  相似文献   

17.

Background  

Hammerhead ribozymes are RNA-based molecules which bind and cleave other RNAs specifically. As such they have potential as laboratory reagents, diagnostics and therapeutics. Despite having been extensively studied for 15 years or so, their wide application is hampered by their instability in biological media, and by the poor translation of cleavage studies on short substrates to long RNA molecules. This work describes a systematic study aimed at addressing these two issues.  相似文献   

18.
The design of novel methods giving access to peptide alkylthioesters, the key building blocks for protein synthesis using Native Chemical Ligation, is an important area of research. Bis(2-sulfanylethyl)amido peptides (SEA peptides) 1 equilibrate in aqueous solution with S-2-(2-mercaptoethylamino)ethyl thioester peptides 2 through an N,S-acyl shift mechanism. HPLC was used to study the rate of equilibration for different C-terminal amino acids and the position of equilibrium as a function of pH. We show also that thioester form 2 can participate efficiently in a thiol-thioester exchange reaction with 5% aqueous 3-mercaptopropionic acid. The highest reaction rate was obtained at pH 4. These experimental conditions are significantly less acidic than those reported in the past for related systems. The method was validated with the synthesis of a 24-mer peptide thioester. Consequently, SEA peptides 1 constitute a powerful platform for access to native chemical ligation methodologies.  相似文献   

19.
Thiocoraline is a potent antitumor agent isolated from the marine organism Micromonospora sp. This symmetric bicyclic depsipeptide binds the minor groove of DNA. Here we report two solid-phase strategies for the syntheses of azathiocoraline and its analogues. The thioester linkage was replaced by an amide bond to improve the compound's pharmacokinetic properties. The first strategy is based on a convergent (4+4) approach, whilst the second is a stepwise synthesis, cyclizations in both approaches occurring on the solid support. These two strategies were designed to overcome problems caused by the presence of consecutive noncommercial N-methyl amino acids, to avoid epimerization during cyclization and/or fragment condensation, and to form the disulfide bridge under solid-phase conditions. The heterocyclic moiety was added in the last step of the synthesis to assist the preparation of libraries of new compounds with potential therapeutic applications.  相似文献   

20.
BACKGROUND: The 'RNA world' hypothesis requires that RNA be able to catalyze a wide variety of chemical reactions. In vitro selection from combinatorial RNA libraries has been used to identify several catalytic activities, most of which have resulted in a self-modification of RNA at one of its constituents. The formation of carbon-carbon bonds is considered an essential prerequisite for a complex metabolism based on RNA. RESULTS: We describe the selection and characterization of new ribozymes that catalyze carbon-carbon bond formation by Diels-Alder reaction of a biotinylated maleimide with an RNA-tethered anthracene. Secondary structure analysis identified a 49-nucleotide RNA motif that accelerates the reaction about 20,000-fold. The motif has only 11 conserved nucleotides that are present in most of the selected sequences. The ribozyme motif is remarkably adaptable with respect to cofactor and metal-ion requirements. The motif was also re-engineered to give a 38-mer RNA that can act as a 'true' catalyst on short external substrate oligonucleotide-anthracene conjugates. CONCLUSIONS: We have identified a small, highly abundant RNA motif that can solve the complex task of forming two carbon-carbon bonds between two reactants in trans, a catalytic capacity useful for creating prebiotically relevant molecules. This is the smallest and fastest RNA catalyst for carbon-carbon bond formation reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号