首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new reaction sequence for the chemical functionalization of single-wall carbon nanotubes (SWNTs) consisting of the nucleophilic addition of t-BuLi to the sidewalls of the tubes and the subsequent reoxidation of the intermediates t-Bu(n)SWNT(n-) leading to t-Bu(n)SWNT was developed. During the formation of the t-Bu(n)SWNT(n-), a homogeneous dispersion in benzene was formed due to the electrostatic repulsion of the negatively charged intermediates causing debundling. The entire reaction sequence can be repeated, and the degree of functionalization of the products (t-Bu(n))(m)SWNT (m = 1-3) increases with increasing m. Degrees of functionalization expressed as the carbon-to-addend ratio of up to 31 were reached. The reaction was studied in detail by photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy (STM). The C 1s core level spectra reveal that the nucleophilic attack of the t-BuLi leads to negatively charged SWNTs. Upon oxidation, this negative charge is removed. The valence band spectra of the functionalized samples exhibit a significant reduction in the pi-derived density of states. In STM, the covalently bonded t-butyl groups attached to the sidewalls have been visualized. Raman spectroscopy reveals that addition of the nucleophile to metallic tubes is preferred over the addition to semiconducting tubes.  相似文献   

2.
Semiconducting-only single-walled carbon nanotube (SWNT) network field effect transistors (FETs) have been fabricated by selectively reacting all the metallic SWNTs in the devices with diazonium reagents in a controlled manner. We have shown that the concentration of diazonium reagents used is crucial for selectively eliminating metallic SWNTs and keeping semiconducting ones intact. Excessive amounts of diazonium reagents can indiscriminately react with both metallic and semiconducting SWNTs and thus degrade the performance of the devices. This new technique will facilitate the process of fabrication of high-performance SWNT-based electronic devices.  相似文献   

3.
Resonance Raman spectroscopy/microscopy was used to study individualized single-walled carbon nanotubes (SWNTs) both in aqueous suspensions as well as after spin-coating onto Si/SiO2 surfaces. Four different SWNT materials containing nanotubes with diameters ranging from 0.7 to 1.6 nm were used. Comparison with Raman data obtained for suspensions shows that the surface does not dramatically affect the electronic properties of the deposited tubes. Raman features observed for deposited SWNTs are similar to what was measured for nanotubes directly fabricated on surfaces using chemical vapor deposition (CVD) methods. In particular, individual semiconducting tubes could be distinguished from metallic tubes by their different G-mode line shapes. It could also be shown that the high-power, short-time sonication used to generate individualized SWNT suspensions does not induce defects in great quantities. However, (additional) defects can be generated by laser irradiation of deposited SWNTs in air, thus giving rise to an increase of the D-mode intensity for even quite low power densities (approximately 10(4) W/cm2).  相似文献   

4.
A nanocomposite carbon was prepared by grafting a carbonizable polymer, poly(furfuryl alcohol) (PFA), to a single-wall carbon nanotube (SWNT). The SWNT was first functionalized with arylsulfonic acid groups on the sidewall via a method using a diazonium reagent. Both Raman and FTIR spectroscopies were used to identify the functional groups on the nanotube surface. HRTEM imaging shows that the SWNT bundles are exfoliated after functionalization. Once this state of the SWNTs was accomplished, the PFA-functionalized SWNT (PFA-SWNT) was prepared by in situ polymerization of furfuryl alcohol (FA). The sulfonic acid groups on the surface of the SWNT acted as a catalyst for FA polymerization, and the resulting PFA then grafted to the SWNTs. The surfaces of the SWNTs converted from hydrophilic to hydrophobic when they were wrapped with PFA. The formation of the polymer and the attraction between it and the sulfonic acid groups were confirmed by IR spectra. A nanocomposite carbon was generated by heating the PFA-SWNT in argon at 600 degrees C, a process during which the PFA was transformed to nanoporous carbon (NPC) and the sulfonic acid groups were cleaved from the SWNT. Based upon the Raman spectra and HRTEM images of the composite, it is concluded that SWNTs survive this process and a continuous phase is formed between the NPC and the SWNT.  相似文献   

5.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

6.
In this report, procedures are discussed for the enrichment of single-walled carbon nanotube (SWNT) types by simple filtration of the functionalized SWNTs through silica gel. This separation uses nanotube sidewall functionalization employing two different strategies. In the first approach, a crude mixture of metallic and semiconducting SWNTs was heavily functionalized with 4-tert-butylphenyl addends to impart solubility to the entire sample of SWNTs. Two major polarity fractions were rapidly filtered through silica gel, with the solvent being removed in vacuo, heated to 700 degrees C to remove the addends, and analyzed spectroscopically. The second approach uses two different aryldiazonium salts (one with a polar grafting group and one nonpolar), appended selectively onto the different SWNTs by means of titration and monitoring by UV analysis throughout the functionalization process. The different addends accentuate the polarity differences between the band-gap-based types permitting their partial separation on silica gel. Thermal treatment regenerated pristine SWNTs in enriched fractions. The processed samples were analyzed and characterized by Raman spectroscopy. A controlled functionalization method using 4-fluorophenyl and 4-iodophenyl addends was performed, and XPS analyses yielded data on the degree of functionalization needed to affect the van Hove singularities in the UV/vis/NIR spectra. Finally, we demonstrate that relative peak intensity changes in Raman spectra can be caused by morphological changes in SWNT bundling based on differing flocculation or deposition methods. Therefore a misleading impression of separations can result, underscoring the care needed in assessing efficacies in SWNT enrichment and the prerequisite use of multiple excitation wavelengths and similar flocculation or deposition methods in comparative analyses.  相似文献   

7.
The electronic structure and (13)C NMR chemical shift of (9,0) single-walled carbon nanotubes (SWNTs) are investigated theoretically. Shielding tensor components are also reported. Density functional calculations were carried out for C(30)-capped and H-capped fragments which serve as model systems for the infinite (9,0) SWNT. Based on the vanishing HOMO-LUMO gap, H-capped nanotube fragments are predicted to exhibit "metallic" behavior. The (13)C chemical shift approaches a value of approximately 133 ppm for the longest fragment studied here. The C(30)-capped SWNT fragments of D(3d)/D(3h) symmetry, on the other hand, are predicted to be small-gap semiconductors just like the infinite (9,0) SWNT. The differences in successive HOMO-LUMO gaps and HOMO and LUMO energies, as well as the (13)C NMR chemical shifts, converge slightly faster with the fragment's length than for the H-capped tubes. The difference between the H-capped and C(30)-capped fragments is analyzed in some detail. The results indicate that (at least at lengths currently accessible to quantum chemical computations) the H-capped systems represent less suitable models for the (9,0) SWNT because of pronounced artifacts due to their finite length. From our calculations for the C(30)-capped fragments, the chemical shift of a carbon atom in the (9,0) SWNT is predicted to be about 130 ppm. This value is in reasonably good agreement with experimental estimates for the (13)C chemical shift in SWNTs.  相似文献   

8.
Nanocomposites of polyaniline (PANI) and single‐wall carbon nanotubes (SWNTs) were prepared and characterized via resonance Raman and electronic absorption spectroscopy (ultraviolet–visible/near‐infrared). The chemical synthesis of PANI was performed in the presence of SWNTs in concentrations ranging from 10 to 50 wt % (SWNT/PANI). The obtained materials were hydrophilic, homogeneous composite compounds. The chemical interaction between PANI (in the conducting emeraldine salt form and in the insulating emeraldine base form) and metallic and semiconducting nanotubes was investigated. The emeraldine salt form of the polymer was significantly stabilized in the composite in comparison with plain PANI. A selective electronic interaction process between PANI and metallic SWNTs was found. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 815–822, 2005  相似文献   

9.
Here we report a simple and scalable method to fabricate high performance thin-film field-effect transistors(FETs) with high yield based on chemically functionalized single-walled carbon nanotubes(SWNTs) by organic radical initiators.The UV-Vis-NIR spectra,Raman spectra and electrical characterization demonstrated that metallic species in CoMoCat 65 and HiPco SWNTs could be effectively eliminated after reaction with some organic radical initiators.The effects of the substrate properties on the electrical pr...  相似文献   

10.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

11.
We present a systematic experimental investigation of the reactions between hydrogen plasma and single-walled carbon nanotubes (SWNTs) at various temperatures. Microscopy, infrared (IR) and Raman spectroscopy, and electrical transport measurements are carried out to investigate the properties of SWNTs after hydrogenation. Structural deformations, drastically reduced electrical conductance, and an increased semiconducting nature of SWNTs upon sidewall hydrogenation are observed. These changes are reversible upon thermal annealing at 500 degrees C via dehydrogenation. Harsh plasma or high temperature reactions lead to etching of nanotubes likely via hydrocarbonation. Smaller SWNTs are markedly less stable against hydrocarbonation than larger tubes. The results are fundamental and may have implications to basic and practical applications including hydrogen storage, sensing, band gap engineering for novel electronics, and new methods of manipulation, functionalization, and etching of nanotubes.  相似文献   

12.
Microwave-assisted functionalization of single-wall carbon nanotubes (SWNTs) in a mixture of nitric and sulfuric acids was carried out to synthesize highly water-dispersible nanotubes. Stable concentrations as high as 10 mg/mL were obtained in deionized water that are nearly 2 orders of magnitude higher than those previously reported. This was after only 3 min of functionalization reaction. Fourier transform infrared spectra showed the presence of carboxylated (-COOH) and acid sulfonated (-SO(2).OH or -SO(3)(-) H(+)) groups on the SWNTs. On the basis of elemental analysis, it was estimated that one out of three carbon atoms was carboxylated, while one out of 10 carbon atoms was sulfonated. The Raman spectra taken both in aqueous dispersion and in the solid phase indicated charge transfer from the SWNT backbone to the functional groups. Scanning electron microscope images of thin films deposited from an aqueous suspension showed that the SWNTs were aligned parallel to one another on the substrate. The images also indicated some reduction in average length of the nanotubes. Transmission electron microscope images of thin films from a dilute methanol dispersion showed that the SWNTs were extensively debundled. Laser light scattering particle size measurements did not show evidence for the existence of particles in the 3-800 nm size range, indicating that the functionalized SWNTs might have dispersed to have formed a true solution. Moreover, the microwave-processed SWNTs were found to contain significantly smaller amounts of the original iron catalyst relative to that present in the starting nanotubes. The electrical conductivity of a thermally annealed thin membrane obtained from the microwave-functionalized SWNTs was found to be the same as that of a similar membrane obtained from a suspension of the starting nanotubes.  相似文献   

13.
In this Communication, we have demonstrated a facile and effective approach to identify the structure of the superlong well-aligned single-walled carbon nanotubes (SWNTs) by the combination of electrodeposition of metal (Ag) with Raman spectroscopy. The suitable density and the visibility of the Ag-deposited long oriented nanotubes make it possible to acquire Raman spectra from isolated individual nanotubes very easily. The results reveal that the well-oriented SWNT arrays on SiO2/Si wafer fabricated by EtOH chemical vapor deposition using Fe/Mo nanoparticles as catalyst exhibit a low percentage of metallic SWNTs (5%). Among other SWNTs about 62.3% are semiconducting SWNTs, and a small amount of nanotubes are quasimetallic. About 32% are a so-called quasi-insulator, which is caused inevitably by the defects during growth. Furthermore, the structural uniformity of the long SWNTs can be also evaluated by the deposition of Ag along the length and Raman spectroscopy. This method also provides an approach to deposit other metals on long SWNTs, which could have various potential applications such as for use as sensors, etc. More importantly, this facile method can be applied to long SWNT arrays fabricated from other different catalytic systems so that the relationship between the growth conditions and the structures of SWNTs are expected to be ruled out.  相似文献   

14.
Here, we carried out Raman study on chemically doped single wall carbon nanotube (SWNT)/double-walled carbon nanotube (DWNT) mixed bucky-papers. Their highly different Raman responses (e.g., a large upshift of tangential mode of SWNT and no large changes in the frequencies of tangential mode assigned to the outer tubes of the DWNT) upon doping with the sulfuric acid could be used as a qualitative indicator of the purity of the DWNT samples with the concentration of its SWNTs contents.  相似文献   

15.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

16.
Covalent sidewall addition to single-walled nanotubes (SWNTs) of a series of organolithium and organomagnesium compounds (nBuLi, tBuLi, EtLi, nHexLi, nBuMgCl, tBuMgCl) followed by reoxidation is reported. The functionalized R(n)-SWNTs were characterized by Raman and NIR emission spectroscopy. The reaction of SWNTs with organolithium and magnesium compounds exhibits pronounced selectivity: in general, metallic tubes are more reactive than semiconducting ones. The reactivity of SWNTs toward the addition of organometallic compounds is inversely proportional to the diameter of the tubes. This was determined simultaneously and independently for both metallic and semiconducting SWNTs. The reactivity also depends on the steric demands of the addend. Binding of the bulky t-butyl addend is less favorable than addition of primary alkyl groups. Significantly, although tBuLi is less reactive than, for example, nBuLi, it is less selective toward the preferred reaction with metallic tubes. This unexpected behavior is explained by fast electron transfer to the metallic SWNTs having low-lying electronic states close to the Fermi level, a competitive initial process. The NIR emission of weakly functionalized semiconducting SWNTs, also reported for the first time, implies interesting applications of functionalized tubes as novel fluorescent reporter molecules.  相似文献   

17.
The changes in energetic, structural, and electronic properties of the metallic (5,5) single-walled carbon nanotube (SWNT) with the degree of sidewall covalent functionalization of CCl(2) are investigated extensively by using density functional theory calculations. The saturation concentration of CCl(2) covalent functionalization is predicted to be 33.3%. The cycloadducts always adopt an open structure. A band gap opens as the functionalization concentration reaches 11% and then basically increases with increasing functionalization concentration. These results are in agreement with available experiments and can be applied to accurately predict the band gap of metallic SWNTs produced by the HiPco method at a given CCl(2) functionalization concentration.  相似文献   

18.
This review is focused on charge-transfer reactions at carbon nanotubes and fullerenes. The spectroelectrochemistry of fullerenes deals with the spin states of fullerenes, the role of mono-anions and the reactivity of higher charged states in C60. The optical (Vis-NIR) spectroelectrochemistry of single-walled carbon nanotubes (SWNTs) follows changes in the allowed optical transitions among the Van Hove singularities. The Raman spectroelectrochemistry of SWNT benefits from strong resonance enhancement of the Raman scattering. Here, both semiconducting and metallic SWNTs are analyzed using the radial breathing mode (RBM) and G-modes as well as the second order (D, G') and intermediate frequency modes. Raman spectroelectrochemistry of SWNT allows the addressing of index-identified tubes and even single isolated nanotubes. Optical and Raman spectroelectrochemistry of fullerene peapods, C60@SWNT and C70@SWNT indicates effective shielding of the intratubular fullerene (peas). The most striking effect in the spectroelectrochemistry of peapods is the so-called "anodic Raman enhancement" of intratubular C60. Double-walled carbon nanotubes (DWNTs) give a specific spectroscopic response in Vis-NIR spectroelectrochemistry for the inner and the outer tube. They are better distinguishable by Raman spectroelectrochemistry which allows a precise tracing of the specific doping response of outer/inner tubes.  相似文献   

19.
Inversed micelles formed by polystyrene-block-poly(2-vinyl-pyridine) in toluene loaded with FeCl3 were used to synthesize and deliver discrete Fe2O3 nanoclusters with uniform diameters to flat substrates. Single-walled carbon nanotubes (SWNTs) were grown by chemical vapor deposition using these nanoclusters as the catalysts. Atomic force microscope characterizations revealed that high density SWNT mats were grown on the surface and the diameter of nanotubes was controlled by the diameter of nanoclusters. Electrical measurement revealed that the dense SWNT mats contained both semiconducting and metallic SWNTs and could be used to build thin film transistors.  相似文献   

20.
Pyridine-functionalized single-walled carbon nanotubes (SWNTs) are prepared from the addition of a pyridine diazonium salt to nanotubes. The location and distribution of the functional groups is determined by atomic force microscopy using electrostatic interactions with gold nanoparticles. The pyridine-functionalized SWNTs are able to act as cross-linkers and hydrogen bond to poly(acrylic acid) to form SWNT hydrogels. The pyridine-functionalized SWNTs are further characterized using Raman, FTIR, UV/vis-NIR, and X-ray photoelectron spectroscopy and thermogravimetric analysis-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号