首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The class of stress problems for orthotropic shells of revolution loaded along narrow ring zones or by forces concentrated in the meridional direction is analyzed on the basis of a refined model. It is established that the solutions of these two problems for essentially anisotropic shells do not fully agree  相似文献   

2.
Übersicht Die lineare Biegetheorie von Rotationsschalen wird durch ein System gekoppelter Differentialgleichungen erster Ordnung beschrieben. Zu ihrer numerischen Integration wird das Differenzenverfahren herangezogen, womit sich die Zustandsgrößen allgemeiner Rotationsschalen bei beliebigen Randbedingungen und Beanspruchungen ermitteln lassen. Die Anwendung des Verfahrens wird an Beispielen erläutert.
Summary The linear bending theory of shells of revolution is described by a system of first order differential equations. The system is solved numerically by the method of differences. Thus, the stresses and elastic deformations of shells of revolution with arbitrary loads and boundary conditions can be determined. The application of the method is illustrated by several examples.
  相似文献   

3.
A nonclassical model of shells that accounts for transverse shears and reduction is used to develop a method for solving the contact problem for inhomogeneous anisotropic shells of revolution subject to a field of mechanical and thermal loads. The prestresses are described by parametric terms in the linearized geometrically nonlinear equations of the second-order theory of flexible shells. The influence of the prestressed state of shells interacting with a flat surface on the contact area and the distribution of contact pressure is analyzed. Some computational features of the technique are discussed __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 67–77, October 2006.  相似文献   

4.
A mathematical model for the closure of a crack-like cavity with cohesive end zones in an isotropic medium is constructed using methods of elastic theory. It is assumed that the interaction between the surfaces of the crack-like cavity under the action of body and surface forces can lead to the formation of contact zones on their surfaces. Determination of the unknown parameters characterizing the closure of the crack-like cavity reduces to a system of singular integrodifferential equations. The integral equations are converted to a system of nonlinear algebraic equations which is solved by the method of successive approximations. The contact stresses, the interaction forces between the faces of the crack-like cavity, and the size of the contact zone in which the faces of the crack-like cavities are closed are determined.  相似文献   

5.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

6.
A method is proposed to solve the contact problem for laminated anisotropic shells of revolution. The method is based on a two-dimensional model that accounts for transverse shears and reduction. Also the method is based on the method of successive approximations, the generalized pseudo-force method, and a numerical-analytical method of solving boundary-value problems. The results obtained for a cylindrical shell of complex thickness structure are compared with those obtained in three-dimensional formulation__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 5, pp. 68–75, May 2005.  相似文献   

7.
本文用有限元法和Fourier级数展开技术求解复合材料回转壳体在各种荷载作用下的弯曲问题,文中利用回转壳在几何上的轴对称性质,将各物理量在环向展开为Fourei级数,而在母线和壳厚方向分割单元,所采用的单元为6节点18自由度等参元,它考虑了剪切变形和挤压变形的影响,能计算厚度方向的挤压应力,数值算例表明,本文提出的单元性能优良,算法稳定收敛。  相似文献   

8.
Normal and radial displacements of a shallow thin sheil of revolution are related by theoretical considerations. Radial displacements are calculated from slope measurements on the generatrices of the initial shell surface (before loading) and of the final shell surface (after loading). Membrane and bending stresses over the entire shell surface are then computed from the measured slope values and the calculated radial displacements. A measuring technique is developed which is especially suitable for shallow shells enclosed in small spaces. It consists mainly of making a cast of the initial and final shell surface using an epoxy platic. The disklike cast is cut along its diameter. The slope values are measured optically along the line which is formed by the intersection of the cutting plane with the deflection surface. The method is applied to a shallow thin shell of revolution in contact with a concentric piston and to a clamped circular plate, both experiencing large axisymmetric deflection.  相似文献   

9.
This paper addresses the class of stress–strain problems for thin orthotropic cylindrical shells of arbitrary cross section under centrifugal loads. Separating out the variables for a simply supported shell yields a system of ordinary differential equations for which the boundary-value problem is solved by a stable numerical method. Study is made of the distribution of displacements in shells of elliptical cross section versus the ratio of ellipse exes and the eccentricity of the axis of revolution relative to the geometrical axis of symmetry  相似文献   

10.
A method of studying the natural vibrations of highly inhomogeneous shells of revolution is developed. The method is based on a nonclassical theory of shells that allows for transverse shear and reduction. By separating variables, the two-dimensional problem is reduced to a sequence of one-dimensional eigenvalue problems. The inverse iteration method is used to reduce these problems to a sequence of inhomogeneous boundary-value problems solved by the orthogonal sweep method. The capabilities of the method are illustrated by solving certain representative problems and comparing their solutions with those obtained using the three-dimensional theory of elasticity, the classical theory of shells, and the refined Timoshenko model __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 38–47, September 2007.  相似文献   

11.
A method is proposed to exactly satisfy all the constitutive equations for a layer material under conditions of their contact and conditions on the outside surfaces. In the well-known continuum models of deformation of multilayered plates and shells, the relationship between the transverse normal stresses and strains is integral only. This method increases considerably the order of differentiation of the working system of equations  相似文献   

12.
The postbuckling response of shells is known to exhibit complex phenomena including mode switching and interaction, particularly in the advanced postbuckling range. The existing literature contains many initial postbuckling analyses as well as advanced postbuckling analyses for a single buckling mode, but little work is available on the advanced postbuckling analysis of shells of revolution considering mode switching and interaction. In this paper, a numerical method for the advanced postbuckling analysis of thin shells of revolution subject to torsionless axisymmetric loads is presented, in which such mode switching and interaction are properly captured. Numerical results obtained using the present method for several typical problems not only demonstrate the capability of the method, but also lead to significant observations concerning the postbuckling behavior of thin shells of revolution. In particular, the results show that strong interaction between different harmonic modes may exist and the transition of deformation mode from one to another is gradual. Consequently, the conventional approach of finding the postbuckling path of a shell as the lower festoon curve of postbuckling paths of individual harmonic modes is not valid and is at best a convenient approximation.  相似文献   

13.
A method of the numerical solution of nonlinear unsteady problems of axisymmetric elastoplastic straining of shells of revolution with allowance for torque loading at high strains is proposed. The method is based on the geometrically nonlinear theory of the Timoshenko shells and the plasticity theory with due allowance for combined isotropic and kinematic hardening. The problem is solved with the use of the variational difference method. Results of numerical and experimental investigations of elastoplastic straining of cylindrical shells under proportional and sequential kinematic tensile and torque loading are reported.  相似文献   

14.
With respect to an arbitrary configuration of a deformed structure, two sets of incremental equations are proposed for the deformation analysis of revolution shells and diaphragms loaded by both lateral pressures and the initial stresses produced in manufacturing. These general equations can be reduced to the simplified Koiter's Reissner-Meissner-Reissner (RMR) equations and the simplified Reissner's equations, when the initial stresses are set to zero. They can also be deduced to the total Lagrange form or the updated Lagrange form, respectively, as the structure is specified as the un-deformed or the former-deformed configurations. These incremental equations can be easily transformed into finite difference forms and solved by common numerical solvers of ordinary differential equations. Some numerical examples are presented to show the applications of the incremental equations to the deep shell of revolution and the corrugated diaphragms used in microelectronical mechanical system (MEMS). The results are in good agreement with those from finite element method (FEM). The project supported by the National Natural Science Foundation of China (10125211) and the 973 Program (G1999033108) The English text was polished by Keren Wang.  相似文献   

15.
Nonlinear behavior of deep orthotropic spherical shells under inward radial concentrated load is studied. The singular perturbation method is developed and applied to Reissner’s equations describing axially symmetric large deflections of thin shells of revolution. A small parameter proportional to the ratio of shell thickness to the sphere radius is used. The simple asymptotic formulas describing load–deflection diagrams, maximum bending and membrane stresses of the structure are derived. The influence of boundary conditions on the behavior of the shell by large deflections is considered. Obtained asymptotic solution is in close agreement with the experimental and numerical results and has the same accuracy (in the asymptotic meaning) as the given equations of nonlinear theory of thin shells.  相似文献   

16.
A number of approaches to the solution of stress problems for anisotropic inhomogeneous shells in the classical formulation are discussed. A review is made of approaches to the solution of one- and two-dimensional static problems for thin shells with variable parameters and to the solution of stress–strain problems for anisotropic shells of revolution under axisymmetric and non-axisymmetric loading, shallow convexo-convex shells, noncircular cylindrical shells, plates of various shapes, and shells of complex geometry  相似文献   

17.
复合材料旋转壳自由振动分析的新方法   总被引:1,自引:0,他引:1  
提出了一种半解析区域分解法来分析任意边界条件的复合材料层合旋转壳自由振动. 沿壳体旋转轴线将壳体分解为一些自由的层合壳段, 视位移边界界面为一种特殊的分区界面;采用分区广义变分和最小二乘加权残值法将壳体所有分区界面上的位移协调方程引入到壳体的能量泛函中, 使层合壳的振动分析问题归结为无约束泛函变分问题. 层合壳段位移变量采用Fourier 级数和Chebyshev 多项式展开. 以不同边界条件的层合圆柱壳、圆锥壳及球壳为例, 采用区域分解法分析了其自由振动, 并将计算结果与其他文献值进行了对比. 算例表明, 该方法具有高效率、高精度和收敛性好等优点.  相似文献   

18.
A mixed variational principle is derived by Hamilton’s method from the principle of minimum potential energy for thin anisotropic shells of revolution and is then used to derive a normal system of equations with complex coefficients. Discrete orthogonalization is used to solve this homogeneous system and the nonlinear system of equations that describes the precritical state of shells. A shell generated by revolving a circular arc around the axis parallel to its chord is analyzed for stability. The solution is compared with the approximate solution obtained assuming that the precritical state is membrane. It is established that the approximate problem formulation gives incorrect results for shells of negative Gaussian curvature  相似文献   

19.
王旭  张俊乾  郭兴明 《力学学报》2005,37(2):169-174
采用复变函数法探讨了在一个刚性压头作用下十次对称二维准晶材料的两类接触问题,即具有有限摩擦的接触问题以及粘结接触问题.特别地对于平底压头,获得了表征声子场和相位子场的全纯函数的显式表达式,以及在压头上的接触应力分布.结果显示,对于具有有限摩擦的接触问题,接触应力在接触区边缘具有实指数奇异性-1/2±β,其中β由准晶体的材料常数及静摩擦系数确定;而对于粘结接触问题,接触应力在接触区边缘具有振荡型奇异性-1/2±iε,其中ε由准晶体的材料常数确定.  相似文献   

20.
The elastoplastic state of conical shells weakened by an elliptic hole and subjected to finite deflections is studied. The material of the shells is assumed to be isotropic and homogeneous; the load is constant internal pressure. The problem is formulated and a technique for numerical solution with allowance for physical and geometrical nonlinearities is proposed. The distribution of stresses, strains, and displacements along the hole boundary and in the zones of their concentration is studied. The solution obtained is compared with the solutions of the physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem. The stress-strain state around an elliptic hole in a conical shell is analyzed considering both nonlinearities __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 69–77, February 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号