首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

2.
Thermoanaerobacter cyclomaltodextrin glucanotransferase (CGTase) was immobilized using different supports and immobilization methods to study the effect on activity recovery. The enzyme covalently attached into glyoxyl-silica showed low activity recovery of 1.5%. The hydrophobic adsorption of the enzyme on Octadecyl-Sepabeads yielded also low activity recovery, 3.83%, and the enzyme could easily leak from the support at low ionic strength, although the immobilization yield was satisfactory, approximately 76%. The CGTase encapsulated in a sol–gel matrix gave an activity recovery of 6.94% and maximum cyclization activity at 60 °C, at pH 6.0. The half-time life at 60 °C, pH 6.0, in the presence of substrate was 100 min, which was lower than that of the free enzyme. The best activity recovery in this work (6.94%) is approximately five times smaller than that obtained previously using glyoxyl-agarose as support and covalent immobilization. Thus, the best support and method we tested so far for immobilization of CGTase is covalent attachment on glyoxyl-agarose.  相似文献   

3.
A recombinant esterase from Lactobacillus plantarum was immobilized on hydrophobic support polypropylene Accurel MP1000 by adsorption. Adsorption efficiency was 83%, and the immobilized protein was 12.4 mg/g of support. Esterase activity was determined using p-nitrophenyl butyrate as substrate, and highest activities were observed at 50 °C for immobilized enzyme and 30 °C for free enzyme extract. Concerning thermal stability, after enzyme incubation at 80 °C for 30 min, immobilized and free enzyme retained 91% and 56% of initial activity, respectively. Immobilized enzyme presented lower V max and higher K m than free enzyme. Protein was not released from the support, and esterase activity increased after 3 cycles of reuse.  相似文献   

4.

This paper describes a new support that permits to efficient immobilization of L-asparaginase (L-ASNase). For this purpose, Fe3O4 magnetic nanoparticles were synthesized and coated by MCM-41. 3-chloropropyltrimethoxysilane (CPTMS) was used as a surface modifying agent for covalent immobilization of L-ASNase on the magnetic nanoparticles. The chemical structure; thermal, morphological, and magnetic properties; chemical composition; and zeta potential value of Fe3O4@MCM-41-Cl were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction patterns (XRD), and zeta-potential measurement. The immobilization efficiency onto Fe3O4@MCM-41-Cl was detected as 63%. The reusability, storage, pH, and thermal stabilities of the immobilized L-ASNase were investigated and compared to that of soluble one. The immobilized enzyme maintained 42.2% of its original activity after 18 cycles of reuse. Furthermore, it was more stable towards pH and temperature compared with soluble enzyme. The Michaelis–Menten kinetic properties of immobilized L-ASNase showed a lower Vmax and a similar Km compared to soluble L-ASNase. Immobilized enzyme had around 47 and 32.5% residual activity upon storage a period of 28 days at 4 and 25 °C, respectively. In conclusion, the Fe3O4@MCM-41-Cl@L-ASNase core–shell nanoparticles could successfully be used in industrial and medical applications.

  相似文献   

5.
The different ionic molecules/compounds were used as a ligand for the immobilization of penicillin G acylase on the highly porous cellulose-based polymeric membrane having buffer flux 1,746 LMH (L m−2 h−1) at 0.5 bar pressure. The immobilized enzyme activity around 250 UApp was obtained with the ligand such as proline, tryptophan, casein acid hydrolysate, and brilliant green. Comparatively, proline showed less IMY% (percentage immobilization yield—58) but higher RTA% (percentage of activity retention—71) and specific activity (145 UApp g−1). However, the crosslinked preparation of brilliant green obtained using glutaraldehyde showed 82 ± 2.7% immobilized enzyme activity after the completion of successive five cycles. In comparison with the free enzyme, the enzyme immobilized on the brilliant green coupled membrane showed around 2.4-fold increase in K m value (47.4 mM) as well as similar optimum pH (7.2) and temperature (40 °C). The immobilized enzyme retained almost 50% activity after 107 days and 50 cycles of operation. Almost 50% decrease in buffer flux after enzyme immobilization was observed. At the end of the 30 cycles, flux pattern shows around 38% decrease in buffer flux however, after 16 cycles of operation flux moves closer towards the steady state.  相似文献   

6.
Aspergillus niger NRC 107 xylanase and β-xylosidase were immobilized on various carriers by different methods of immobilization, including physical adsorption, covalant binding, ionic binding, and entrapment. The immobilized enzymes were prepared by physical adsorption on tannin-chitosan, ionic binding onto Dowex-50W, covalent binding on chitosan beads through glutaraldehyde, and entrapment in polyacrylamide had the highest activities. In most cases, the optimum pH of the immobilized enzymes were shifted to lower than those of free enzymes. The optimum reaction temperature of immobilized xylanase was shifted from 50°C to 52.5–65°C, whereas that of immobilized β-xylosidase was shifted from 45°C to 50–60°C. TheK m values of immobilized enzymes were higher than those of native enzymes. The operational stability of the immobilized enzymes was evaluated in continuous operation in packed-bead column-type reactors. The enzymes covalently bounded to chitosan showed the highest operational stability. However, the enzymes immobilized by physical adsorption or by ionic binding showed a low operational stability. The enzymes entrapped in polyacrylamide exhibited lower activity, but better operational stability.  相似文献   

7.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

8.
Immobilized alcohol oxidase was used in the determination of blood alcohol. The alcohol oxidase catalyzed the aerobic oxidation of ethanol and the oxygen concentration was monitored with an oxygen membrane electrode in a flow cell. The enzyme was immobilized either by covalent attachment via glutaraldehyde to the inside walls of nylon tubing, or by adsorption onto three separate controlled-pore glass support materials: TiO2, SiO2, or AL2O3. The supports were packed into 10 cm lengths of 3 mm i.d. glass tubing or 30 cm lengths of 5 mm i.d. nylon tubing. The five methods of immobilization were compared for stability and activity toward ethanol. Immobilization on silanized glass beads results in the highest activity and greatest stability of the reactor.  相似文献   

9.
To improve the catalysis of pullulanase from Anoxybacillus sp.WB42, Fe3O4@polydopamine nanoparticles (Fe3O4@PDA) were prepared and modified with functional groups for immobilization of pullulanases via covalent binding or ionic adsorption. Immobilized pullulanases had lower thermal stability than that of free pullulanase, whereas their catalysis depended on the surface characteristics of nanoparticles. As for covalent immobilization of pullulanases onto Fe3O4@PDA derivatives, the spacer grafted onto Fe3O4@PDA made the catalytic efficiency of pullulanase increase up to the equivalence of free enzyme but dramatically reduced the pullulanase thermostability. In contrast, pullulanases bounded ionically to Fe3O4@PDA derivatives had higher activity recovery and catalytic efficiency, and their catalytic behaviors varied with the modifier grafted onto Fe3O4@PDA. Among these immobilized pullulanases, ionic adsorption of pullulanase on Fe3O4@PDA-polyethyleneimine-glycidyltrimethylammonium gave a high-performance and durable catalyst, which displayed not only 1.5-fold increase in catalytic efficiency compared to free enzyme but also a significant improvement in operation stability with a half of initial activity after 27 consecutive cycles with a total reaction time of 13.5 h, and was reversible, making this nanoparticle reusable for immobilization.  相似文献   

10.
β-Glucosidase is a key enzyme in the hydrolysis of cellulose for producing feedstock glucose for various industrial processes. Reuse of enzyme through immobilization can significantly improve the economic characteristics of the process. Immobilization of the fungal β-glucosidase by covalent binding and physical adsorption on silica gel and kaolin was conducted for consequent application of these procedures in large-scale industrial processes. Different immobilization parameters (incubation time, ionic strength, pH, enzyme/support ratio, glutaric aldehyde concentration, etc.) were evaluated for their effect on the thermal stability of the immobilized enzyme. It was shown that the immobilized enzyme activity is stable at 50 °C over 8 days. It has also been shown that in the case of immobilization on kaolin, approximately 95% of the initial enzyme was immobilized onto support, and loss of activity was not observed. However, covalent binding of the enzyme to silica gel brings significant loss of enzyme activity, and only 35% of activity was preserved. In the case of physical adsorption on kaolin, gradual desorption of enzyme takes place. To prevent this process, we have carried out chemical modification of the protein. As a result, after repeated washings, enzyme desorption from kaolin has been reduced from 75 to 20–25% loss.  相似文献   

11.
A constant development of dye‐affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye‐affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30°C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (Kd) obtained was 2.61 ± 0.36 × 10–5 m , proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Cellulose-based carriers Granocel were specially prepared and optimised for covalent immobilization of enzymes. The effects of carrier characteristics such as pore size, chemistry of anchor groups and their density on invertase immobilization efficiency were evaluated. It was found that the preferential adsorption/binding of the enzyme to a carrier during coupling and its activity after immobilization depended on microenvironmental effects created by hydrophilic surface of the carrier, functional groups and their activators. The best preparations (activity approx. 300 U/mL, high storage stability) were obtained for NH2-Granocel activated with glutaraldehyde. It is probably due to Granocel modification with pentaethylenehexamine that gave a 19-atom spacer arm. The enzyme concentration in coupling mixture was optimised as well. The kinetic parameters of sucrose hydrolysis for native and immobilized invertase were evaluated. Compared to the native invertase, K m value of immobilized enzyme was only twice higher with about three times lower substrate inhibition. Reaction runs in a well mixed batch reactors with native and immobilized invertase showed slightly slower reaction rate in the case of the enzyme covalently bound to Granocel. Very good stability of cellulose-based carrier was proved experimentally by 20 successive reaction runs in a batch reactor.  相似文献   

13.
A novel affinity covalent immobilization technique of glucoamylase enzyme onto ρ-benzoquinone-activated alginate beads was presented and compared with traditional entrapment one. Factors affecting the immobilization process such as enzyme concentration, alginate concentration, calcium chloride concentration, cross-linking time, and temperature were studied. No shift in the optimum temperature and pH of immobilized enzymes was observed. In addition, K m values of free and entrapped glucoamylase were found to be almost identical, while the covalently immobilized enzyme shows the lowest affinity for substrate. In accordance, V m value of covalently immobilized enzyme was found lowest among free and immobilized counter parts. On the other hand, the retained activity of covalently immobilized glucoamylase has been improved and was found higher than that of entrapped one. Finally, the industrial applicability of covalently immobilized glucoamylase has been investigated through monitoring both shelf and operational stability characters. The covalently immobilized enzyme kept its activity over 36 days of shelf storage and after 30 repeated use runs. Drying the catalytic beads greatly reduced its activity in the beginning but recovered its lost part during use. In general, the newly developed affinity covalent immobilization technique of glucoamylase onto ρ-benzoquinone-activated alginate carrier is simple yet effective and could be used for the immobilization of some other enzymes especially amylases.  相似文献   

14.
Two conducting polymers, poly(pyrrole) (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) were used as immobilization matrices for cholesterol oxidase (ChOx). The amperometric responses of the enzyme electrodes were measured by monitoring oxidation current of H2O2 at +0.7 V in the absence of a mediator. Kinetic parameters, such as K m and I max, operational and storage stabilities, effects of pH and temperature were determined for both entrapment supports. K m values are found as 7.9 and 1.3 mM for PPy and PEDOT enzyme electrodes, respectively; it can be interpreted that ChOx immobilized in PEDOT shows higher affinity towards the substrate.  相似文献   

15.
β-Glucosidase is part of the cellulases and is responsible for degrading cellobiose into glucose, a compound that can be used to produce biofuels. However, the use of the free enzyme makes the process more expensive. Enzyme immobilization improves catalytic characteristics and supports, such as zeolites, which have physical-chemical characteristics and ion exchange capacity that have a promising application in the biotechnological industry. This research aimed to immobilize by adsorption a recombinant β-glucosidase from Trichoderma reesei, obtained in Escherichia coli BL21 (DE3), in a commercial zeolite. A Box Behnken statistical design was applied to find the optimal immobilization parameters, the stability against pH and temperature was determined, and the immobilized enzyme was characterized by SEM. The highest enzymatic activity was determined with 100 mg of zeolite at 35 °C and 175 min. Compared to the free enzyme, the immobilized recombinant β-glucosidase presented greater activity from pH 2 to 4 and greater thermostability. The kinetic parameters were calculated, and a lower KM value was obtained for the immobilized enzyme compared to the free enzyme. The obtained immobilization parameters by a simple adsorption method and the significant operational stability indicate promising applications in different fields.  相似文献   

16.

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0?±?0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

  相似文献   

17.
An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.  相似文献   

18.
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.  相似文献   

19.
There are many parameters that may have influenced the properties of cell during immobilization process. Particularly, the immobilization methods, carrier materials, and enzyme loading amount that have been proved to be important for immobilization process. The physiological responses of microorganisms are depending on the immobilization technique used. Typical alterations to the micro-environment of the immobilized cell involved the altered water activity, presence of ionic charges, cell confinement and modified surface tension. In this study, the graphene oxide was selected as a suitable carrier for immobilization process of recombinant E.coli and adsorption was chosen as an appropriate method to improve the production of engineered thermostable xylanase. High level production of thermostable xylanase by immobilized recombinant cell in the 5 L bioreactor was studied by using optimum research surface methodology (RSM) conditions was studied. The immobilization of E. coli onto nanoparticle matrix manages to improve the cell performance by improving the protein expression, reduced the occurrences of cell lysis as well as improved the plasmid stability of the host cell. Thus, immobilization contributes a physical support for both whole cells as well as enzymes to develop a better operative achievement system for industrialized fields and give rise to the biological advancement existing enzyme for instance xylanase.  相似文献   

20.
金属有机骨架(MOF)材料由于其孔隙率高、比表面积大以及具有发达的内联通孔道结构等优点,可以作为优良的生物分子固定化载体。通过表面活性自组装策略制备了铈基介孔MOF(Ce-MOF-F),表征结果表明,该材料有大的比表面积和呈辐射状的介孔孔道结构。以其为载体、南极假丝酵母脂肪酶B(CALB)为模型酶,通过物理吸附法制备了生物催化剂CALB@Ce-MOF-F,对该固定化酶的酶载量和催化性能进行了研究。在优化条件下,CALB的负载量为162.0mg/g载体,水解活性为899.1U/g蛋白。与游离CALB相比,CALB@Ce-MOF-F表现出对高温、酸碱和有机溶剂等有更强的耐受性;将Ce-MOF-F用于多种酶的固定化,研究其作为载体的普适性,结果表明,介孔Ce-MOF-F对洋葱伯克氏菌脂肪酶(BCL)和漆酶有良好的固定效果,可以作为良好载体,并能对酶起到较好的保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号