首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to find an alternative for commercial inulinase, a strain XL01 identified as Penicillium sp. was screened for inulinase production. The broth after cultivated was centrifuged, filtered, and used as crude enzyme for the following saccharification. At pH 5.0 and 50 °C, the crude enzyme released 84.9 g/L fructose and 20.7 g/L glucose from 120 g/L inulin in 72 h. In addition, simultaneous saccharification and fermentation of chicory flour for d-lactic acid production was carried out using the self-produced crude inulinase and Lactobacillus bulgaricus CGMCC 1.6970. A high d-lactic acid titer and productivity of 122.0 g/L and 1.69 g/(L h) was achieved from 120 g/L chicory flour in 72 h. The simplicity for inulinase production and the high efficiency for d-lactic acid fermentation provide a perspective and profitable industrial biotechnology for utilization of the inulin-rich biomass.  相似文献   

2.
A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0–5.5 and 45–50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.  相似文献   

3.
An inulinase-producing strain, Paenibacillus polymyxa ZJ-9, was isolated from natural sources to produce R,R-2,3-butanediol via one-step fermentation of raw inulin extracted from Jerusalem artichoke tubers. The inulinase gene from P. polymyxa ZJ-9 was cloned and overexpressed in Escherichia coli BL21 (DE3), and the purified recombinant inulinase was estimated to be approximately 56 kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and gel filtration chromatography. This result suggests that the active form of the inulinase is probably a monomer. Terminal hydrolysis fructose units from the inulin indicate that enzymes are exo-inulinase. The purified recombinant enzyme showed maximum activity at 25 °C and pH 6.0, which indicate its extreme suitability for industrial applications. Zn2+, Fe2+, and Mg2+ stimulated the activity of the purified enzyme, whereas Co2+, Cu2+, and Ni2+ inhibited enzyme activity. The K m and V max values for inulin hydrolysis were 1.72 mM and 21.69 μmol min?1 mg?1 protein, respectively. The same parameters toward sucrose were 41.09 mM and 78.7 μmol min?1 mg?1 protein, respectively. Considering its substrate specificity and other enzymatic characteristics, we believe that this inulinase gene from P. polymyxa ZJ-9 could be transformed into other special bacterial strains to allow inulin conversion to other biochemicals and bioenergy through one-step fermentation.  相似文献   

4.
Sorbitol, a polyol found in many fruits, is attracting increasing industrial interest as a sweetener, humectant, texturizer, and softener. It is principally produced by chemical means. The bacterium Zymomonas mobilis is able to produce sorbitol together with gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via the enzyme glucose-fructose oxidoreductase, so far only known from Z. mobilis. The possibilities for the production of sorbitol by Z. mobilis are discussed also under the aspect of an industrial process and compared with the current chemical as well as other microbiologic processes. The production process by Z. mobilis shows economic possibilities for certain countries, such as Brazil, considering only the products sorbitol and ethanol as an important byproduct. For the other byproduct, gluconic acid, further studies for its partial substitution must be conducted.  相似文献   

5.
Inulinase is an enzyme relevant to fructose production by enzymatic hydrolysis of inulin. This enzyme is also applied in the production of fructo-oligosaccharides that may be used as a new food functional ingredient. Commercial inulinase is currently obtained using inulin as substrate, which is a relatively expensive raw material. In Brazil, the production of this enzyme using residues of sugarcane and corn industry (sugarcane bagasse, molasses, and corn steep liquor) is economically attractive, owing to the high amount and low cost of such residues. In this context, the aim of this work was the assessment of inulinase production by solid state fermentation using by Kluyveromyces marxianus NRRL Y-7571. The solid medium consisted of sugar cane bagasse supplemented with molasses and corn steep liquor. The production of inulinase was carried out using experimental design technique. The effect of temperature, moisture, and supplements content were investigated. The enzymatic activity reached a maximum of 445 units of inulinase per gram of dry substrate.  相似文献   

6.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)(max)/(W(GA) +t), (SOR)=t (SOR)(max)/(W(Sor)+t), v(GA)=[W(GA) (GA)(max)]/(W(GA)+t)(2) and V(SOR)=[W(SOR) (SOR)(max)]/(W(SOR)+t)(2). Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)(max)= 541 g/L, (SOR)(max)=552 g/L, W(GA)=4.8h, W(SOR)=4.9h, upsilon(GA)=112.7 g/L. and upsilon(SOR)=112.7 g/L.  相似文献   

7.
Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600?>?200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ~8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71–87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.  相似文献   

8.
In the present preliminary study, we report results for the biocellulose nanofibres production by Gluconacetobacter xylinus. Production was examined by utilizing different feedstocks of single sugars and sugar mixtures with compositions similar to the acid hydrolyzates of different agriculture residues. Profiles for cell proliferation, sugar consumption, and the subsequent pH changes were thoroughly analyzed. Highest biocellulose production of 5.65 g/L was achieved in fructose medium with total sugar consumption of 95.57%. Moreover, the highest production using sugar mixtures was 5.2 g/L, which was achieved in feedstock with composition identical to the acid hydrolyzate of wheat straws. This represented the highest biocellulose yield of 17.72 g/g sugars compared with 14.77 g/g fructose. The lowest production of 1.1 and 1.75 g/L were obtained in xylose and glucose media, respectively, while sucrose and arabinose media achieved relatively higher production of 4.7 and 4.1 g/L, respectively. Deviation in pH of the fermentation broths from the optimum value of 4–5 generally had marked effect on biocellulose production with single sugars in feedstock. However, the final pH values recorded in the different sugar mixtures were ~3.3–3.4, which had lower effect on production hindrance. Analyzing profiles for sugars' concentrations and cell growth showed that large amount of the metabolized sugars were mainly utilized for bacterial cell growth and maintenance, rather than biocellulose production. This was clearly observed with single sugars of low production, while sugar consumption was rather utilized for biocellulose production with sugar mixtures. Results reported in this study demonstrate that agriculture residues might be used as potential feedstocks for the biocellulose nanofibres production. Not only this represents a renewable source of feedstock, but also might lead to major improvements in production if proper supplements and control were utilized in the fermentation process.  相似文献   

9.
Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke.  相似文献   

10.
A novel process using chemical, thermal, and enzymatic treatment for conversion of hulled barley into fermentable sugars was developed. The purpose of this process is to convert both lignocellulosic polysaccharides and starch in hulled barley grains into fermentable sugars simultaneously without a need for grinding and hull separation. In this study, hulled barley grains were treated with 0.1 and 1.0 wt.-% sulfuric acid at various temperatures ranging from 110 to 170 °C in a 63-ml flow-through packed-bed stainless steel reactor. After sulfuric acid pretreatment, simultaneous conversion of lignocellulose and starch in the barley grains into fermentable sugars was performed using an enzyme cocktail, which included α-amylase, glucoamylase, cellulase, and β-glucosidase. Both starch and non-starch polysaccharides in the pre-treated barley grains were readily converted to fermentable sugars. The treated hulled barley grains, including their hull, were completely hydrolyzed to fermentable sugars with recovery of almost 100% of the available glucose and xylose. The pretreatment conditions of this chemical, thermal, and enzymatic (CTE) process for achieving maximum yield of fermentable sugars were 1.0 wt.% sulfuric acid and 110 °C. In addition to starch, the acid pretreatment also retained most of the available proteins in solid form, which is essential for subsequent production of fuel ethanol and high protein distiller’s dried grains with solubles co-product.  相似文献   

11.
Thermostable invertase (E.C. 3.2.1.26) and inulinase 2,1-beta-D-fructan fructanohydrolase (E.C. 3.2.1.7) activities were produced by Cladosporium cladosporioides grown on sucrose, inulin, yam extract, or Jerusalem artichoke. The ratio I (inulinase)/S(invertase) activity was between 0.31 and 0.36. Both activities had high temperature optima (60 degrees C) and were stable during pretreatment for 4.5 h at this temperature. Whole cells of C. cladosporioides were used for batch fructose production from Jerusalem artichoke extract at several concentrations. With the highest extract concentration used (260 g total sugars/L), total hydrolysis was achieved in 150 min at 60 degrees C. Thin-layer chromatography of the enzymatic hydrolysis of inulin and Jerusalem artichoke extract showed that from the beginning of the reaction, fructose was the only product released. This suggests an exoaction mechanism, beta-D-fructofuranoside fructohydrolase [E.C. 3.2.1.2.6].  相似文献   

12.
Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L?1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application.  相似文献   

13.
In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.  相似文献   

14.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)max/(WGA +t), (SOR)=t (SOR)max/(WSor+t), vGA=[WGA (GA)max]/(WGA+t)2 and VSOR=[WSOR (SOR)max]/(WSOR+t)2. Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)max= 541 g/L, (SOR)max=552 g/L, WGA=4.8h, WSOR=4.9h, υGA=112.7 g/L· and υSOR=112.7 g/L·.  相似文献   

15.
Glucose/xylose mixtures (90 g/L total sugar) were evaluated for their effect on ethanol fermentation by a recombinant flocculent Saccharomyces cerevisiae, MA-R4. Glucose was utilized faster than xylose at any ratio of glucose/xylose, although MA-R4 can simultaneously co-ferment both sugars. A high percentage of glucose can increase cell biomass production and therefore increase the rate of glucose utilization (1.224 g glucose/g biomass/h maximum) and ethanol formation (0.493 g ethanol/g biomass/h maximum). However, the best ratio of glucose/xylose for the highest xylose consumption rate (0.209 g xylose/g biomass/h) was 2:3. Ethanol concentration and yield increased and by-product (xylitol, glycerol, and acetic acid) concentration decreased as the proportion of glucose increased. The maximum ethanol concentration was 41.6 and 21.9 g/L after 72 h of fermentation with 90 g/L glucose and 90 g/L xylose, respectively, while the ethanol yield was 0.454 and 0.335 g/g in 90 g/L glucose and 90 g/L xylose media, respectively. High ethanol yield when a high percentage of glucose is available is likely due to decreased production of by-products, such as glycerol and acetic acid. These results suggest that ethanol selectivity is increased when a higher proportion of glucose is available and reduced when a higher proportion of xylose is available.  相似文献   

16.
The extracellular inulinase in the supernatant of the cell culture of the marine yeast Cryptococcus aureus G7a was purified to homogeneity with a 7.2-fold increase in specific inulinase activity compared to that in the supernatant by ultrafiltration, concentration, gel filtration chromatography (Sephadex™ G-75), and anion exchange chromatography (DEAE sepharose fast flow anion exchange). The molecular mass of the purified enzyme was estimated to be 60.0 kDa. The optimal pH and temperature of the purified enzyme were 5.0 and 50 °C, respectively. The enzyme was activated by Ca2+, K+, Na+, Fe2+, and Zn2+. However, Mg2+, Hg2+, and Ag+ acted as inhibitors in decreasing the activity of the purified inulinase. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, EDTA, and 1,10-phenanthroline. The K m and V max values of the purified enzyme for inulin were 20.06 mg/ml and 0.0085 mg/min, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified inulinase, indicating the purified inulinase had a high exoinulinase activity.  相似文献   

17.
An exoinulinase has been isolated, purified and characterised from a commercially available broth of Aspergillus ficuum. The enzyme was purified 4.2-fold in a 21% yield with a specific activity of 12,300 U mg−1(protein) after dialysis, ammonium sulphate fractionation and Sephacryl S-200 size exclusion and ion exchange chromatography. The molecular weight of this enzyme was estimated to be 63 kDa by SDS-PAGE. It exhibited a pH and temperature optima of 5.4 and 50 °C respectively and under such conditions the enzyme remained stable with 96% and 63.8% residual activity after incubation for 12 h and 72 h respectively. The respective K m and V max values were 4.75 mM and 833.3 μmol min−1 ml−1, respectively. Response surface methodological statistical analysis was evaluated for the maximal production of fructose from the hydrolysis of pure commercial chicory inulin. Incubation of the dialyzed crude exoinulinase (100 U/ml, 48 h, 50 °C, 150% inulin, pH 5.0) produced the highest amount of fructose (106.4 mg/ml) under static batch conditions. The purified exoinulinase was evaluated for fructose production and the highest amount (98 mg/ml) was produced after 12 h incubation at 50 °C, 150% inulin pH 5.0. The use of a crude exoinulinase preparation is economically desirable and the industrial production of fructose from inulin hydrolysis is biotechnologically feasible.  相似文献   

18.
A newly isolated mesophilic bacterial strain from dahlia rhizosphere, identified as Staphylococcus sp. and designated as RRL-M-5, was evaluated for inulinase synthesis in submerged cultivation using different carbon sources individually or in combination with inulin as substrate. Inulin appeared as the most favorable substrate at a 0.5–1.0% concentration. Media pH influenced the enzyme synthesis by the bacterial strain, which showed an optimum pH at 7.0–7.5. Supplementation of fermentation medium with external nitrogen (organic and inorganic) showed a mixed impact on bacterial activity of enzyme synthesis. The addition of soybean meal and corn steep solid resulted in about an 11% increase in enzyme titers. Among inorganic nitrogen sources, ammonium sulfate was found to be the most suitable. Maximum enzyme activities (446 U/L) were obtained when fermentation was carried out at 30°C for 24 h with a medium containing 0.5% inulin as a sole carbon source and 0.5% soybean meal as the nitrogen source. Bacterial inulinase could be a good source for the hydrolysis of inulin for the production of d-fructose.  相似文献   

19.
Glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae was purified by anion exchange and gel filtration chromatographic techniques using a fast protein liquid chromatographic system. The structure and thermal stability of this unique ‘thermostable and neutral glucoamylase’ were analyzed by circular dichroism (CD). T. indicae-seudaticae glucoamylase (TGA) contained typical aromatic amino acid (tryptophan/tyrosine) fingerprints in its tertiary structure. Analysis of the far-UV CD spectrum at pH 7.0 and 25 °C revealed the presence of 45% α-helix, 43% β-sheet, and 12% remaining structures. The α-helix content was highest at pH 7.0, where glucoamylase is optimally active. This observation points towards the possible (α/α)6 barrel catalytic domain in TGA, as reported in microbial glucoamylases. Thermal denaturation curves of the pure protein at different pH values revealed maximum stability at pH 7.0, where no change in the secondary structure was observed upon heating in the temperature range between 20 °C and 60 °C. The observed midpoint of thermal denaturation (T m) of glucoamylase at pH 7.0 was 67.1 °C, which decreased on either sides of this pH. Thermostability of TGA enhanced in the presence of starch (0.1%) as no transition curve was obtained in the temperature range between 20 °C and 85 °C. The only product of TGA action on starch was glucose, and it did not exhibit transglycosylation activity even at 40% glucose that can also be considered as an advantage during starch saccharification.  相似文献   

20.
Multienzymatic conversion of sucrose into fructose and gluconic acid was studied through fed-batch and continuous (in a membrane reactor) processes. The law of substrate addition (sucrose or glucose) for the fed-batch process which led to a yield superior to 80% was the decreasing linear type, whose feeding rate (?; L/h) was calculated through the equation: ? = ?o ? k.t, where ?o (initial feeding rate, L/h), k (linear addition constant, L/h 2), and t (reaction time, h). In the continuous process, the yield of conversion of sucrose (Y) was superior to 70% under the following conditions: dilution rate?=?0.33 h?1, total duration of 15 h, pH 5.0, 37 °C and initial sucrose concentration of 64 g/L (Y?=?92%), 100 g/L (Y?=?83%), or 150 g/L (Y?=?76%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号