首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper compares the performance of three long-chain acids—oleic and elaidic (both olefinic) and stearic (aliphatic)—as a capping agent in the synthesis of magnetic Co nanoparticles. The particles were formed through thermal decomposition of dicobalt octacarbonyl in toluene in the presence of the long-chain acid, and characterized by TEM, high-resolution TEM, and SQUID measurements. Infrared spectra revealed that some of the added olefinic acid was transformed from cis- to trans-configuration (for oleic acid) or from trans- to cis- (for elaidic acid) to facilitate the formation of a densely packed monolayer on the surface of Co nanoparticles. As compared to aliphatic acids, olefinic acids are advantageous for dense packing on small particles with high surface curvatures due to a bent shape of the cis-isomer. The presence of an olefinic acid is able to control particle growth, stabilize the colloidal suspension, and prevent the final product from oxidation by air. Our results indicate that oleic acid, elaidic acid, and a mixture of oleic/stearic acids or elaidic/stearic acids have roughly the same performance in serving as a capping agent for the synthesis of Co nanoparticles with a spherical shape and narrow size distribution.  相似文献   

2.
The ability to engineer the surface properties of magnetic nanoparticles is important for their various applications, as numerous physical and chemical properties of nanoscale materials are seriously affected by the chemical constitution of their surfaces. For some specific applications, nanoparticles need to be transferred from a polar to a nonpolar environment (or vice versa) after synthesis. In this work we have developed a universal method for the phase transfer of magnetic nanoparticles that preserves their shape and size. Octadecyltrimethoxysilane was used to cap the surfaces of the aqueous magnetic nanoparticles, thereby allowing their transfer into nonpolar solution. The resulting hydrophobic magnetic nanoparticles were transferred back into aqueous solution by subsequently covering them with an egg‐PC lipid monolayer. The superparamagnetic properties of the particles were retained after the phase transfer. The maximum transfer yields are dependent on their particle size with a maximum value of 93.16±4.75 % for magnetic nanoparticles with a diameter of 100 nm. The lipid‐modified magnetic particles were stable over 1 week, and thus they have potential applications in the field of biomedicine. This work also provides a facile strategy for the controllable engineering of the surface properties of nanoparticles.  相似文献   

3.
Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.  相似文献   

4.
In this communication, solid-phase reactions for the synthesis of Lys-monofunctionalized gold nanoparticles are described. A controlled and selective fabrication of linear nanoparticle arrays can be achieved through peptide linkage systems, and therefore it is essential to prepare Fmoc amino acid nanoparticle building blocks susceptible to Fmoc solid-phase peptide synthesis. Gold nanoparticles containing carboxylic acids (2) in the organic shell were covalently ligated to Lys on solid supports through amide bond coupling reactions. We employed Fmoc-Lys-substituted polymer resins such as Fmoc-Lys-Wang or Fmoc-Lys-HMPA-PEGA. The low density of Lys on the matrix enabled 2 nm-sized gold nanoparticles to react with Lys in a 1:1 ratio. Subsequent cleavage reactions using 60% TFA reagent resulted in Lys transfer from the solid matrix to gold nanoparticles, and the Fmoc-Lys-monofunctionalized gold nanoparticles (5) were obtained with 3-15% yield. Synthesis using HMPA-PEGA resin increased productivity due to the superior swelling properties of PEGA resin in DMF. Monofunctionalization of nanoparticles was microscopically characterized using TEM for the ethylenediamine-bridged nanoparticle dimers (6). By counting the number of 6, we found that at least 60% of cleaved nanoparticles were monofunctionalized by Lys. This method is highly selective and efficient for the preparation of monofunctionalized nanoparticles.  相似文献   

5.
The design and synthesis of 1,3-dithiol linked acridinedione functionalized gold nanoparticles (ADDDT-GNP) is described. ADDDT-GNP was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV-vis, steady-state and time-resolved fluorescence techniques. Conformational analysis of 1,3-dithiol ligands using density functional theory (DFT) reveals that they can cap on gold clusters through 1,2-capping mode, in which the two sulfur atoms of the dithiol bind covalently with two adjacent gold atoms on the surface of the cluster. The present study shows that three conformers of the ligand can cap in the 1,2-mode of capping. The triexponential fluorescence decay observed in the capped nanogold complex with fluorophore-labeled 1,3-dithiol may originate from the three conformers of the complex in the 1,2-capping mode.  相似文献   

6.
A new method for green synthesis of silver nanoparticles using the cell-free filtrate of Penicillium nalgiovense AJ12 as reducing and protecting agent was described. The pathway is based on the reduction of Ag1+ by protein(s). Various techniques such as UV–Vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared and Zeta potential measurements were used to characterize the silver nanoparticle obtained. The results revealed synthesis of the spherical silver nanoparticles coated with protein(s). The average size of the particles obtained from TEM was 15.2 ± 2.6 nm. DLS measurements showed that the particle size was higher than that estimated from TEM measurements and was 25.2 ± 2.8 nm. Studies on the role of the cell-free filtrate proteins in the synthesis of silver nanoparticles indicated that the process is non-enzymatic but involves amino acids interactions with silver ions. It was found that the aqueous silver nanoparticles suspensions exhibited excellent stability over a wide range of ionic strength, pH and temperature.  相似文献   

7.
8.
The preparation of gold nanoparticle (AuNP) assemblies was conducted by the synthesis and dipolar assembly of ferromagnetic core-shell nanoparticles composed of AuNP cores and cobalt NP shells. Dissolution of metallic Co phases with mineral acids afforded self-assembled AuNP chains and bracelets.  相似文献   

9.
The transfer of nucleic acids (DNA or RNA) into living cells, that is, transfection, is a major technique in current biochemistry and molecular biology. This process permits the selective introduction of genetic material for protein synthesis as well as the selective inhibition of protein synthesis (antisense or gene silencing). As nucleic acids alone are not able to penetrate the cell wall, efficient carriers are needed. Besides viral, polymeric, and liposomal agents, inorganic nanoparticles are especially suitable for this purpose because they can be prepared and surface-functionalized in many different ways. Herein, the current state of the art is discussed from a chemical viewpoint. Advantages and disadvantages of the available methods are compared.  相似文献   

10.
We report the magnetic recoverable catalyst (CuFe2O4) catalyzed multicomponent reaction of aliphatic amines, formaldehyde, arylboronic acids and alkynyl carboxylic acids for the synthesis of diverse propargylamines at room temperature.  相似文献   

11.
Indium-doped CdSe nanoparticles have been synthesized and characterized. Their light absorption, photoluminescence, and structure are similar to undoped CdSe nanoparticles. The greater part of the In associated with the nanoparticles is removed when the nanoparticles undergo ligand exchange by pyridine. As observed with undoped nanoparticles, a ZnS capping layer on the indium-doped nanoparticles results in enhanced nanocrystal photoluminescence. Also, the ZnS cap enhances the retention of In by the nanoparticles. Elemental analysis shows ligand exchange causes CdSe to be lost and capping with ZnS results in the loss of Se. We conclude that In-doped nanoparticles have most of the In on their surface, capping helps the nanoparticles retain the In, and they do not have altered electronic properties.  相似文献   

12.
Selenourea is used as an effective selenium surrogate in the C-Se cross-coupling reaction catalyzed by copper oxide nanoparticles under ligand free conditions. This protocol has been utilized for the synthesis of a variety of symmetrical diaryl selenides in good to excellent yields from the readily available aryl halides/boronic acids.  相似文献   

13.
Colloidal selenium nanoparticles (NPs) were synthesized via acidic decomposition of sodium selenosulfate. The effects of synthesis and post-synthesis treatment conditions on the size, structure and size distribution of the Se nanoparticles are discussed. It is shown that the decomposition of sodium selenosulfate with non-oxidative acids (e.g., HCl) in aqueous solutions of polymers (sodium polyphosphate, gelatin, polyvinyl alcohol, polyethyleneglycole) and surfactants (sodium dodecylsulfonate, cetylpyridinium chloride) results in the formation of amorphous 25–200 nm Se nanoparticles converting upon ageing at 90 °C into trigonal 150–250 nm Se nanocrystals. Optical properties (absorption and Raman spectra) of freshly prepared and aged Se nanoparticles both in colloidal solutions and in polymeric (polyvinyl alcohol) films are analyzed.  相似文献   

14.
采用热蒸发法在SiO2自组装单层膜上制备了帽状锑纳米粒子,通过扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)和紫外-可见-近红外(UV-Vis-NIR)分光光度计对帽状复合纳米粒子的表面形貌、结构以及表面等离子共振特性进行了研究和表征。结果表明,制备的复合纳米粒子呈帽状,表面等离子共振峰具有明显的可调谐性,当二氧化硅粒径增大或锑帽层厚度增加时,等离子共振吸收峰位置红移。  相似文献   

15.
采用真空热蒸发法在SiO2自组装单层膜上沉积金属锡, 制备了帽状锡纳米结构, 通过扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)仪和Cary 5000紫外-可见-近红外(UV-Vis-NIR)分光光度计对其表面形貌、结构以及光谱特性进行了研究和表征. 结果表明, 制备的复合纳米粒子呈帽状, 表面等离子共振峰位具有明显的可调谐性, 随二氧化硅粒径的增大或锡帽层厚度的增加, 表面等离子共振吸收峰向长波方向移动.  相似文献   

16.
The synthesis and characterization of water-soluble dispersions of gold nanoparticles by the reduction of a potassium tetrabromoaurate precursor solution using the amino acids L-tyrosine, glycyl-L-tyrosine, and L-arginine using alkaline synthesis conditions are reported. The particle sizes determined by small-angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM) measurements are found to be inversely proportional to the rate of particle formation, which was determined by time-resolved UV-visible spectrophotometry measurements, and vary very slowly at intermediate gold concentrations and rapidly at the extremes. Dispersions produced with a mixture of the two amino acids glycyl-L-tyrosine and L-tyrosine showed particle sizes and particle size distributions which were directly proportional to the ratio of the two L-amino acids, thus offering the possibility for control over the properties of the gold nanoparticle dispersions.  相似文献   

17.
以水为溶剂, 氨基酸为模板剂, 通过微波辅助水热方法合成了YVO4∶Eu纳米粒子. 该纳米粒子具有结晶化程度高、 稳定性好及尺寸小(<50 nm)等特点, 且在水中具有良好的分散性. 探究了氨基酸加入量对纳米粒子结构及形貌的影响, 并将该合成方法用于其它稀土钒酸盐. 在紫外光激发下, YVO4∶Eu纳米粒子表现出优异的荧光性能(发射明亮的红光), 可将其与柔性聚合物复合用于简易的三维(3D)图像显示. 此外, YVO4∶Eu纳米粒子还可作为荧光探针用于标记小鼠结肠癌细胞(CT26细胞).  相似文献   

18.
Surface modification of Y2O3 nanoparticles   总被引:1,自引:0,他引:1  
Rare earth ion-doped yttrium oxide (Y2O3) nanocrystals are nontoxic and can be prepared as upconversion materials for cellular imaging, but they do not suspend well in water. In contrast to their tendency to dissolve in acidic media, yttria (Y2O3) nanoparticles readily react with phosphonic acids to give phosphonate-bonded yttria particles. Through the choice of phosphonic acid, the hydrophilicity of the nanoparticles can be controlled. The synthesis of a novel tetraethylene glycol-derived phosphonic acid is described; yttria treated with the corresponding phosphonate is easily dispersed in aqueous media. The preparation of yttria bonded to a phosphonate that may be used for cross coupling with biomolecules is also described.  相似文献   

19.
We report here on the polymerization of epoxide monomers on incipient aluminum nanoparticle cores and the effects of changing the epoxide-capping precursor and the metallic monomer ratio on the resultant stability and particle size of passivated and capped aluminum nanoparticles. When altering the ratio of aluminum to cap monomer precursor, nanoparticles capped with epoxydodecane, epoxyhexane, and epoxyisobutane show a clear decreasing trend in stability with decreasing alkane substituent length. The nanoparticle core size was unaffected by cap ratio or composition. PXRD (powder X-ray diffraction) and DSC/TGA (differential scanning calorimetry/thermal gravimetric analysis) confirm the presence of successfully passivated face-centered cubic (fcc) aluminum nanoparticles. We also report preliminary results from ATR-FTIR (attenuated total reflectance-Fourier transform infrared), (13)C CPMAS (cross-polarization/magic-angle spinning), and (27)Al MAS solid-state NMR (nuclear magnetic resonance) measurements. The most stable aluminum nanoparticle-polyether core-shell nanoparticles are found at an Al:monomer mole ratio of 10:1 with an active Al(0) content of 94%.  相似文献   

20.
So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号