首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cu2O nanoparticles (nano-Cu2O) modified glassy carbon electrode (GCE) was fabricated and used to investigate the electrochemical behaviour of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), chronoamperometry (CA), chronocoulometry (CC) and differential pulse voltammetry (DPV). Compared with GCE, a remarkable increase in oxidation peak current was observed. It indicates that nano-Cu2O exhibits remarkable enhancement effect on the electrochemical oxidation of 4-NP. Under the optimised experimental conditions, the oxidation peak currents were propotional to 4-NP concentration in the range from 1.0?×?10?6 to 4.0?×?10?4?mol?L?1 with a detection limit of 5.0?×?10?7?mol?L?1 (S/N?=?3). The fabricated electrode presented good repeatability, stability and anti-interference. Finally, the proposed method was applied to determine 4-NP in water samples. The recoveries for these samples were from 94.60% to 105.5%.  相似文献   

2.
Hu S  Xu C  Wang G  Cui D 《Talanta》2001,54(1):115-123
A new method for the determination of 4-nitrophenol(4-NP) by differential pulse voltammetry (DPV) based on adsorptive stripping technique was described. Cyclic voltammetry (CV) and linear scan voltammetry (LSV) were used in a comparative investigation into the electrochemical reduction of 4-NP at a Na-montmorillonite(SWy-2) and anthraquione (AQ) modified glassy carbon electrode. With this chemically modified electrode, 4-NP was first irreversibly reduced from phiNO(2) to phiNHOH at -0.78 V. A couple of well-defined redox peaks at +0.22 V (vs. SCE) were responsible for a two-electron redox peak between phiNHOH and phiNO. Studies on the effect of pH on the peak height and peak potential were carried out over the pH range 2.0-9.0 with the phosphate buffer solution. A pH of 3.4 was chosen as the optimum pH. The other experimental parameters, such as film thickness, accumulation time and potential etc. were optimized. Anodic peak currents were found to be linearly related to concentration of 4-NP over the range 0.3-45 mg l(-1), with a detection limit of 0.02 mg l(-1). The interference of organic and inorganic species on the voltammetric response have been studied. This modified electrode can be used to the determination of 4-NP in water samples.  相似文献   

3.
The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at −0.7 V versus SCE. The sensor presented better performance in 0.1 mol l−1 acetate buffer at pH 4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200 nmol l−1 was obtained with a sensitivity of 3.057 nA l nmol−1 cm−2. The detection limit for 4-NP determination was 7.5 nmol l−1. The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (± 0.7)%.  相似文献   

4.
Electrochemical application of bismuth film modified glassy carbon electrode was studied with the objective of lead detection. Bismuth film on glassy carbon substrate was formed in a plating solution of 2 mmol/L Bi(NO3)3, in 1 mol/L HCl at ?1.1 V (vs. Ag/AgCl) for 300 s. Lead was detected by differential pulse anodic voltammetry in acetate buffer of pH 5.0 in the concentration range of 7.5 nmol/L to 12.5 μmol/L. Factors influencing the anodic stripping performance, including deposition time, solution pH, Bi(III) concentration, potential, pulse amplitude, pulse width, have been optimized. Three linear calibration plots in the range 7.5 nmol/L to 0.1 μmol/L, 0.25 to 1 μmol/L, 2.5 to 12.5 μmol/L with regression coefficients of 0.991, 0.986 and 0.978 respectively were obtained. The theoretical detection limit equivalent to three times standard deviation for 7.5 nmol/L lead (n = 5) was calculated to be 5.25 nmol/L utilizing a 5 min deposition time and sensitivity 83.97 A L/mol. The sensitivity and detection limit of the method was compared with reported voltammetric methods for detection of lead and the result obtained was found to be promising for determination of lead.  相似文献   

5.
A novel electrochemical sensor for the determination of bisphenol A (BPA) was fabricated by block polyelectrolyte composite films, which composed of diblock polyelectrolyte poly (2-hydroxyethyl methacrylate)-b-poly (2-(dimethylamino) ethyl methacrylate) (PHEMA-b-PDMAEMA, noted as PHD in the later content) and multi-walled carbon nanotubes (MWCNTs). The tertiary amino groups of PDMAEMA can be protonated at physiological pH. The protonated PDMAEMA can thus interact with the negatively charged BPA through electrostatic attraction to increase the BPA sorption capacity and enhance the ability for highly sensitive detection of BPA. The PHD/MWCNTs composite films combine the electrocatalytic property of MWCNTs and the electrostatic attraction of protonated PHD. Because of the above-mentioned excellent property of the composite films, the PHD/MWCNTs/glassy carbon electrode exhibited good electrocatalytic activity to electrooxidation of BPA. The wide linear response range of the BPA sensor was from 4.56 × 10?5 g L?1 to 2.28 × 10?2 g L?1 with a lower detection limit of 2.28 × 10?6 g L?1 (S/N = 3) and high sensitivity 2442.86 μA L g?1 cm?2. The current reached the steady-state current with a shorter response time less than 4 s. The proposed method was successfully applied to determine BPA in real samples (PVC food package, milk, tap water and pond water) and satisfactory results were obtained. These results indicated that the block polyelectrolyte composite have potential applicability of the BPA sensor.  相似文献   

6.
制备了十八烷基三甲基溴化铵( STMAB)改性蒙脱土修饰电极,用循环伏安法和差分脉冲伏安法(DPV)研究了丁香酚在该电极上的电化学行为.在pH6.0 PBS电解液中,丁香酚在该电极上的电极反应受扩散控制,转移电子数等于质子数n=m=2,电极有效面积Aeff=0.034cm2,扩散系数D =2.58×10-6cm2/s....  相似文献   

7.
聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测   总被引:3,自引:0,他引:3  
用循环伏安法制备了聚精氨酸修饰玻碳电极,研究了神经递质多巴胺在该聚合物薄膜修饰电极上的电化学行为及其检测。在pH7.0的磷酸盐缓冲溶液中,多巴胺在聚精氨酸修饰电极上于0.19V和0.16V处出现一对灵敏、可逆的氧化还原峰。在最佳测试条件下,氧化峰电流与多巴胺的浓度在3.0×10-7~8.0×10-4mol/L范围内呈良好的线性关系,线性回归方程为Ipa(μA)=86.063C(mmol/L) 20.183,相关系数r=0.9993,最低检测限(3σ)5.0×10-8mol/L。用于多巴胺针剂含量的测定,结果满意。  相似文献   

8.
9.
A multi-wall carbon nanotube (MWNT) film-modified electrode is described for the determination of malachite green (MG). The electrochemical profile of MG was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), suggesting that the MWNT film facilitates the electron transfer of MG in terms of a potential shift and then significantly enhances the oxidation peak current of MG. The experimental parameters, such as supporting electrolyte, thickness of MWNT film, scan rate and accumulation time, were optimized. Consequently, a sensitive and convenient electrochemical method is proposed for the determination of MG. The oxidation peak current is proportional to the concentration of MG over the range from 5.0 × 10−8 to 8.0 × 10−6 mol L−1 obeying the following equation: ip = 0.09 + 1.19 × 107 C (r = 0.995, ip in μA, C in mol L−1). The detection limit is 6.0 × 10−9 mol L−1 (signal to noise = 3) after 5 min of accumulation. Moreover, this method possesses good reproducibility (RSD is 5.6%, n = 8) as well as long-term stability. Finally, the new method was employed to determine MG in fish samples. Correspondence: W. Huang, Department of Chemistry, Hubei Institute for Nationalities, Enshi 445000, P.R. China  相似文献   

10.
Herein, a novel electrochemical method was developed for the determination of tryptophan based on the poly(4-aminobenzoic acid) film modified glassy carbon electrode (GCE). The electrochemical behaviors of tryptophan at the modified electrode were investigated. It was found that the oxidation peak current of tryptophan at the modified GCE was greatly improved compared with that at the bare GCE. The effects of supporting electrolyte, pH value, scan rate, accumulation potential and time were examined. The oxidation peak current of tryptophan was proportional to its concentration over the range from 1.0 × 10−6 to 1.0 × 10−4 mol L−1. The limit of detection was evaluated to be 2.0 × 10−7 mol L−1. The proposed method was sensitive and simple. It was successfully employed to determine tryptophan in pharmaceutical samples.  相似文献   

11.
肾上腺素在对氨基苯磺酸修饰玻碳电极上的电化学行为   总被引:1,自引:2,他引:1  
采用电化学聚合法首次制备了对氨基苯磺酸修饰玻碳电极。实验表明,该修饰电极对肾上腺素(EP)有明显的电催化特性。在pH 7.6的磷酸盐缓冲溶液(PBS)中,抗坏血酸(AA)和EP在修饰电极上的电位分别为-0.124 V和0.192V。电位差达到300 mV,且在高浓度的AA的存在下可以实现对EP的测定。EP在该电极上检测的线性范围是5.0×10-7~1.0×10-4mol/L,检出限为3.6×10-8。此法已用于针剂样品的测定。  相似文献   

12.
13.
水中对硝基苯酚主要来源于化工、制药行业,它有致癌作用。人们已对它的测定方法进行了大量的研究,最早采用的测定方法是分光光度法,其检测限偏高;色谱法测定对硝基苯酚,操作繁琐,仪器昂贵,分析成本高。后来又发展了一种操作更方便的直接用于测定的电化学方法。本文旨在利用碳纳米管对对硝基苯酚的吸附性能,研究对硝基苯酚在多壁碳纳米管修饰电极上的电化学行为。  相似文献   

14.
15.
Li Y  Zhou Y  Xian H  Wang L  Huo J 《Analytical sciences》2011,27(12):1223-1228
A promising electrochemical sensor was fabricated by the self-assembling of Pt nanoparticles (nano-Pts) on a chitosan (CS) modified glassy carbon electrode (GCE). A field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) and electrochemical techniques were used for characterization of these composites. It has been found that nano-Pts are inserted into the CS layer uniformly, and have a larger surface area compared to the chitosan modified glassy carbon electrode. Electrocatalytic experiments for the oxidation of nitrite and the reduction of iodate have shown that nano-Pts/CS/GCE can decrease the over-potential and increase the faradic current, which can be used for the sensitive determination of nitrite and iodate. Moreover, the prepared modified electrode exhibits good reproducibility and stability, and it is possible that this novel electrochemical sensor can be applied in the sensing and/or biosensing field.  相似文献   

16.
Journal of Solid State Electrochemistry - Hydroxyapatite (HAp)-modified glassy carbon (HAp/GC) electrode was prepared through a two-step chemical reaction process: Hydrogenphosphate, firstly formed...  相似文献   

17.
Di J  Bi S  Zhang F 《Talanta》2004,63(2):265-272
The electrochemical behavior of maltol on a glassy carbon (GC) electrode was investigated. The results were applied to differential pulse voltammetric determination of maltol in beverages pretreated by ultrafiltration. Under the optimum experimental conditions, the linear range is 1×10−5 to 6×10−4 mol l−1 maltol and the relative standard deviation for 0.4 mmol l−1 maltol is 0.6% (n=9). The detection limit was 5 μmol l−1. Furthermore, silica sol-gel film on GC electrode could be used as suitable selective membrane, which integrated selective membrane on the electrode and substituted for the pretreatment of ultrafiltration. Under the above conditions, maltol was determined by semi-differential linear sweep voltammetry at a silica sol-gel modified GC electrode in the concentration range of 5×10−6 to 5×10−4 mol l−1. The detection limit was 2 μmol l−1 and the relative standard deviation for 0.1 mmol l−1 maltol was 0.7% (n=7). The proposed method is of sensitivity, simplicity, rapidness and no contamination. It had been applied to the direct determination of maltol in beverages such as grape wines, drinks and beers without any pretreatment. The results obtained with the present method were satisfactory with those obtained by spectrophotometry. It could be used as a simple and practical method for the determination of the flavor enhancer maltol in beverages.  相似文献   

18.
聚磺胺嘧啶修饰电极伏安法测定对乙酰氨基酚   总被引:1,自引:0,他引:1  
利用循环伏安法制备了聚磺胺嘧啶修饰电极, 研究了对乙酰氨基酚在该修饰电极上的电化学行为. 该电极对对乙酰氨基酚有较强的电催化作用. 在pH 9.0的PBS缓冲溶液中, 用循环伏安法和差分脉冲伏安法在该电极上测定了对乙酰氨基酚, 其线性范围分别为4.0×10-6~3.0×10-4 mol/L和2.0×10-7~1.0×10-5 mol/L, 检出限分别为9.0×10-7 mol/L和8.0×10-8 mol/L.  相似文献   

19.
A nanostructured material of the type Au-ZnO-SiO2 is described that consists of ZnO and gold nanoparticles (NPs) dispersed into a silica matrix and used to construct a voltammetric sensor for 4-nitrophenol. The AuNPs and ZnO NPs are anchored onto the silica network which warrants the nanostructures to be stable in various environments. It also facilitates the electron transfer between the electrolyte and the glassy carbon electrode (GCE). The properties of the nanostructure as a modifier for the GCE were investigated by energy dispersive spectrometry, X-ray diffraction spectroscopy, and transmission electron microscopy. It is shown that the nanostructure increases the surface area. Hence, the cathodic and anodic current in differential pulse voltammetry of 4-nitrophenol are considerably enhanced in comparison to a bare GCE. Under optimum conditions, the currents for oxidation and reduction are proportional to the concentration of 4-nitrophenol in the 0.05–3.5 μM and 0.01–1.2 μM concentration ranges, with 13.7 and 2.8 nM detection limits, respectively. The sensor has excellent sensitivity, fast response, long-term stability, and good reproducibility. It is perceived to be a valuable tool for monitoring 4-nitrophenol in real water samples.
Graphical abstract Schematic of voltammetric sensor for 4-nitrophenol. It is based on GCE modified with gold-ZnO-SiO2 nanostructure. It exhibited the improvement in performance for both oxidation and reduction peaks in terms of linearity, concentration range, detection limit, and sensitivity.
  相似文献   

20.
Electrochemical properties of nicotine at the glassy carbon electrode modified with multi-walled carbon nanotubes were explored. Nicotine underwent irreversible reduction at the modified electrode, which was an adsorption-controlled process with two protons and two electrons. The reductive peak current of nicotine significantly increased at the modified electrode compared with the bare glassy carbon electrode, suggesting that the multi-walled carbon nanotubes can enhance the electron transfer rate. The current was proportional to the concentration of nicotine over two line ranges, and the detection limit was 9.3 µM (at S/N?=?3). For ten parallel detections of 0.62 mM nicotine, the relative standard deviation was 2.67%, suggesting that the film modified electrode had excellent reproducibility. The modified electrode was applied to the direct determination of nicotine in tobacco samples with good sensitivity, selectivity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号