首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
2.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

3.
4.
5.
For an algebra ${\mathcal{A}}$ of complex-valued, continuous functions on a compact Hausdorff space (X, τ), it is standard practice to assume that ${\mathcal{A}}$ separates points in the sense that for each distinct pair ${x, y \in X}$ , there exists an ${f \in \mathcal{A}}$ such that ${f(x) \neq f(y)}$ . If ${\mathcal{A}}$ does not separate points, it is known that there exists an algebra ${\widehat{\mathcal{A}}}$ on a compact Hausdorff space ${(\widehat{X}, \widehat{\tau})}$ that does separate points such that the map ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ is a uniform norm isometric algebra isomorphism. So it is, to a degree, without loss of generality that we assume ${\mathcal{A}}$ separates points. The construction of ${{\widehat{\mathcal{A}}}}$ and ${(\widehat{X}, \widehat{\tau})}$ does not require that ${\mathcal{A}}$ has any algebraic structure nor that ${(X, \tau)}$ has any properties, other than being a topological space. In this work we develop a framework for determining the degree to which separation of points may be assumed without loss of generality for any family ${\mathcal{A}}$ of bounded, complex-valued, continuous functions on any topological space ${(X, \tau)}$ . We also demonstrate that further structures may be preserved by the mapping ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ , such as boundaries of weak peak points, the Lipschitz constant when the functions are Lipschitz on a compact metric space, and the involutive structure of real function algebras on compact Hausdorff spaces.  相似文献   

6.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

7.
8.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

9.
An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all λ?≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals, then there is a model of ZFC where simultaneously ${(\aleph_2, \mu)}$ -ITP and ${(\aleph_3, \mu')}$ -ITP hold, for all ${\mu\geq \aleph_2}$ and ${\mu'\geq \aleph_3}$ .  相似文献   

10.
Let V be a convex subset of a normed space and let a nondecreasing function α : [0, ∞) → [0, ∞) be given. A function ${f : V \rightarrow \mathbb{R}}$ is called α-midconvex if $$f\left(\frac{x+y}{2} \right)\leq \frac{f(x)+f(y)}{2}+\alpha(\|x-y\|) \quad \,{\rm for}\, x,y\in V.$$ It is known (Tabor in Control Cybern., 38/3:656–669, 2009) that if ${f : V \rightarrow \mathbb{R}}$ is α-midconvex, locally bounded above at every point of V then $$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+P_\alpha(\|x-y\|) \quad \,{\rm for}\, x, y \in V,t \in [0,1],$$ where ${P_\alpha(r):=\sum_{k=0}^\infty \frac{1}{2^k} \alpha(2{\rm dist}(2^kr, \mathbb{Z}))}$ for ${r \in \mathbb{R}}$ . We show that under some additional assumptions the above estimation cannot be improved.  相似文献   

11.
Let R be a ring with center Z(R). An additive mapping ${F : R \longrightarrow R}$ is said to be a generalized derivation on R if there exists a derivation ${d : R \longrightarrow R}$ such that F(xy) = F(x)y + xd(y), for all ${x, y \in R}$ (the map d is called the derivation associated with F). Let R be a semiprime ring and U be a nonzero left ideal of R. In the present note we prove that if R admits a generalized derivation F, d is the derivation associated with F such that d(U) ≠ (0) then R contains some nonzero central ideal, if one of the following conditions holds: (1) R is 2-torsion free and ${F(xy) \in Z(R)}$ , for all ${x, y \in U}$ , unless F(U)U = UF(U) = Ud(U) = (0); (2) ${F(xy) \mp yx \in Z(R)}$ , for all ${x,y \in U}$ ; (3) ${F(xy) \mp [x,y] \in Z(R)}$ , for all ${x,y \in U}$ ; (4) F ≠ 0 and F([x,y]) = 0, for all ${x, y \in U}$ , unless Ud(U) = (0); (5) F ≠ 0 and ${F([x, y]) \in Z(R)}$ , for all ${x, y \in U}$ , unless either d(Z(R))U = (0) or Ud(U) = (0)n.  相似文献   

12.
P. Leopardi and the author recently investigated, among other things, the validity of the inequality $n\theta_n^{(\alpha,\beta)}\!<\! (n\!+\!1)\theta_{n+1}^{(\alpha,\beta)}$ between the largest zero $x_n\!=\!\cos\theta_n^{(\alpha,\beta)}$ and $x_{n+1}= \cos\theta_{n+1}^{(\alpha,\beta)}$ of the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$ resp. $P_{n+1}^{( \alpha,\beta)}(x)$ , α?>???1, β?>???1. The domain in the parameter space (α, β) in which the inequality holds for all n?≥?1, conjectured by us, is shown here to require a small adjustment—the deletion of a very narrow lens-shaped region in the square {???1?<?α?<???1/2, ???1/2?<?β?<?0}.  相似文献   

13.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

14.
In this paper we consider the following Kirchhoff type problem: $$(\mathcal{K}) \quad \left(1 + \lambda \int\limits_{\mathbb{R}^3}\big(|\nabla u|^2 + V(y)u^2dy\big)\right)[-\Delta u + V(x)u] = |u|^{p-2}u, \quad {\rm in} \, \mathbb{R}^3,$$ where ${p\in (2, 6)}$ , λ > 0 is a parameter, and V(x) is a given potential. Some existence and nonexistence results are obtained by using variational methods. Also, the “energy doubling” property of nodal solutions of ${(\mathcal{K})}$ is discussed in this paper.  相似文献   

15.
Let ${(\mathcal {X},\Omega)}$ be a closed polarized complex manifold, g be an extremal metric on ${\mathcal {X}}$ that represents the Kähler class Ω, and G be a compact connected subgroup of the isometry group Isom ${(\mathcal {X}, g)}$ . Assume that the Futaki invariant relative to G is nondegenerate at g. Consider a smooth family ${(\mathcal {M}\to B)}$ of polarized complex deformations of ${(\mathcal {X},\Omega)\simeq (\mathcal {M}_0,\Theta_0)}$ provided with a holomorphic action of G which is trivial on B. Then for every ${t\in B}$ sufficiently small, there exists an ${h^{1,1}(\mathcal {X})}$ -dimensional family of extremal Kähler metrics on ${\mathcal {M}_t}$ whose Kähler classes are arbitrarily close to Θ t . We apply this deformation theory to show that certain complex deformations of the Mukai–Umemura 3-fold admit Kähler–Einstein metrics.  相似文献   

16.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

17.
For an abelian group (G, + ,0) we consider the functional equation $$f : G \to G, x + f(y + f(x)) = y + f(x + f(y)) \quad (\forall x, y \in G), \quad\quad\qquad (1)$$ most times together with the condition $$f(0) = 0.\qquad\qquad\qquad\qquad\qquad (0)$$ Our main question is whether a solution of ${(1) \wedge (0)}$ must be additive, i.e., an endomorphism of G. We shall answer this question in the negative (Example 3.14) Rätz (Aequationes Math 81:300, 2011).  相似文献   

18.
We consider regular oblique derivative problem in cylinder Q T ?=????× (0, T), ${\Omega\subset {\mathbb R}^n}$ for uniformly parabolic operator ${{{\mathfrak P}}=D_t- \sum_{i,j=1}^n a^{ij}(x)D_{ij}}$ with VMO principal coefficients. Its unique strong solvability is proved in Manuscr. Math. 203?C220 (2000), when ${{{\mathfrak P}}u\in L^p(Q_T)}$ , ${p\in(1,\infty)}$ . Our aim is to show that the solution belongs to the generalized Sobolev?CMorrey space ${W^{2,1}_{p,\omega}(Q_T)}$ , when ${{{\mathfrak P}}u\in L^{p,\omega} (Q_T)}$ , ${p\in (1, \infty)}$ , ${\omega(x,r):\,{\mathbb R}^{n+1}_+\to {\mathbb R}_+}$ . For this goal an a priori estimate is obtained relying on explicit representation formula for the solution. Analogous result holds also for the Cauchy?CDirichlet problem.  相似文献   

19.
We investigate the translation equation $$F(s+t, x) = F(s, F(t, x)),\quad \quad s,t\in{\mathbb{C}},\qquad\qquad\qquad\qquad({\rm T})$$ in ${\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ , the ring of formal power series over ${\mathbb{C}}$ . Here we restrict ourselves to iteration groups of type II, i.e. to solutions of (T) of the form ${F(s, x) \equiv x + c_k(s)x^k {\rm mod} x^{k + 1}}$ , where k ≥ 2 and c k ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions c n (s) of $$F(s, x) = x + \sum_{n \ge q k}c_n(s)x^n$$ are polynomials in c k (s). It is possible to replace this additive function c k by an indeterminate. In this way we obtain a formal version of the translation equation in the ring ${(\mathbb{C}[y])\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character (depending on certain parameters, the coefficients of the infinitesimal generator H of an iteration group of type II) of these polynomials. Rewriting the solutions G(y, x) of the formal translation equation in the form ${\sum_{n\geq 0}\phi_n(x)y^n}$ as elements of ${(\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right])\left[\kern-0.15em\left[{y}\right]\kern-0.15em\right]}$ , we obtain explicit formulas for ${\phi_n}$ in terms of the derivatives H (j)(x) of the generator ${H}$ and also a representation of ${G(y, x)}$ as a Lie–Gröbner series. Eventually, we deduce the canonical form (with respect to conjugation) of the infinitesimal generator ${H}$ as x k + hx 2k-1 and find expansions of the solutions ${G(y, x) = \sum_{r\geq 0} G_r(y, x)h^r}$ of the above mentioned differential equations in powers of the parameter h.  相似文献   

20.
We consider a singular perturbation problem for a system of nonlinear Schr?dinger equations: $$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$ where N?=?2, 3, ?? 1, ?? 2, ?? > 0 and V 1(x), V 2(x): R N ?? (0, ??) are positive continuous functions. We consider the case where the interaction ?? > 0 is relatively small and we define for ${P\in{\bf R}^N}$ the least energy level m(P) for non-trivial vector solutions of the rescaled ??limit?? problem: $$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$ We assume that there exists an open bounded set ${\Lambda\subset{\bf R}^N}$ satisfying $$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$ We show that (*) possesses a family of non-trivial vector positive solutions ${\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}$ which concentrates??after extracting a subsequence ?? n ?? 0??to a point ${P_0\in\Lambda}$ with ${m(P_0)={\rm inf}_{P\in\Lambda}m(P)}$ . Moreover (v 1?? (x), v 2?? (x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号