首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel formaldehyde-selective amperometric biosensors were developed based on NAD(+)- and glutathione-dependent formaldehyde dehydrogenase isolated from a gene-engineered strain of the methylotrophic yeast Hansenula polymorpha. Electron transfer between the immobilized enzyme and a platinized graphite electrode was established using a number of different low-molecular free-diffusing redox mediators or positively charged cathodic electrodeposition paints modified with Os-bis-N,N-(2,2'-bipyridil)-chloride ([Os(bpy)(2)Cl]) complexes. Among five tested Os-containing redox polymers of different chemical structure and properties, complexes of osmium-modified poly(4-vinylpyridine) with molecular mass of about 60 kDa containing diaminopropyl groups were selected. The positively charged cathodic paint exhibited the best electron-transfer characteristics. Moreover, the polymer layers simultaneously served as a matrix for keeping the negatively charged low-molecular cofactors, glutathione and NAD(+), in the bioactive layer. Additionally, covering the enzyme/polymer layer with a negatively charged Nafion membrane significantly decreased cofactors leakage and simultaneously enhanced the sensor' stability. The developed sensors revealed a high selectivity to formaldehyde (FA) and a low cross-sensitivity to other substances (such as, e.g. butyraldehyde, propionaldehyde, acetaldehyde, methylglyoxal). The maximum current value was 34.2+/-0.72 microA/mm(2) (3.05 mm diameter electrode) and the apparent Michaelis-Menten constant (K(M)(app)) derived from the FA calibration curves was 120+/-5mM with a linear detection range for FA up to 20mM. The best observed sensitivity for reagentless sensor was 1.8 nA microM(-1) (358 Am(-2)M(-1)). The developed sensors had a good operational and storage stability. The laboratory prototype of the sensor was applied for FA testing in some real samples of pharmaceutical (formidron), disinfectant (descoton forte) and industrial product (formalin). A good correlation was revealed between the concentration values measured using the developed FdDH-based sensor, an enzymatic method and standard chemical methods of FA determination.  相似文献   

2.
Two new enzymatic methods have been developed to quantify morphine and codeine simultaneously in a flow injection system (FIA). The first enzyme sensor for morphine or codeine is based on immobilizing morphine dehydrogenase (MDH) and salicylate hydroxylase (SHL) on top of a Clark-type oxygen electrode. Morphine or codeine oxidation by MDH leads to a consumption of oxygen by SHL via the production of NADPH. This decreases the oxygen current of the Clark electrode. Concentrations of codeine and morphine are detected between 2 and 1000 μM and between 5 and 1000 μM, respectively. The second enzyme sensor for morphine is based on laccase (LACC) and PQQ-dependent glucose dehydrogenase (GDH) immobilized at a Clark oxygen electrode. Morphine is oxidized by laccase under consumption of oxygen and regenerated by glucose dehydrogenase. Since laccase cannot oxidize codeine, this sensor is selective for morphine. Morphine is detected between 32 nM and 100 μM. Both sensors can be operated simultaneously in one flow system (FIA) giving two signals without the requirement for a separation step. This rapid and technically simple method allows discrimination between morphine and codeine in less than 1 min after injection. The sampling rate for quantitative measurements is 20 h–1. The method has been applied to the quantitative analysis of codeine or morphine in drugs. Received: 10 August 1998 / Revised: 29 January 1999 / Accepted: 5 February 1999  相似文献   

3.
An original power controlling driving/reading circuit for Porous Silicon JFET (PSJFET) gas sensors is presented. The PSJFET is an integrated p-channel JFET with two independent gates: a meso-structured PS layer, acting as a sensing, floating gate, which modulates the JFET current upon adsorption/desorption of specific analytes, and a high-impedance electric gate, which allows the JFET current tuning independently from analytes in the environment. The circuit exploits the independence of the sensing and electrical gate terminals to set/control the sensor power-dissipation, which is kept almost constant independently from adsorption/desorption-induced effects, while simultaneously carrying out a current-voltage conversion. For such a purpose, a negative feedback loop is used to modulate the PSJFET electric gate voltage, which becomes the output signal, while keeping constant the source-drain sensor current and, hence, the power dissipation. The proposed approach is validated by performing time-resolved measurements on PSJFET sensors under different NO2 concentrations (100ppb, 300ppb, 500ppb), at room temperature.  相似文献   

4.
A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium.  相似文献   

5.
Based on the concept of ion-selective conductometric microsensors (ISCOM) a new calcium sensor was developed and characterized. ISCOM have a single probe, all-solid-state construction and do not need a reference electrode. These sensors are amenable to miniaturization and integration in the true sense of integrated circuit and microsystem technologies. The detection is accomplished by measurement of the bulk conductance Gm of a thin polymeric membrane containing an ion-complexing agent, where the magnitude of Gm can be related to the content of the primary ion in the analyzed solution. Thin-film platinum electrodes forming an interdigitated electrode are used as the transducer to detect the conductivity of the polymeric membrane. Optimization of the membrane composition was carried out by testing different types of calcium-ionophores, polymers, and plasticizers. The sensor characteristics have been investigated. The limit of detection is about 10(-7) mol L(-1). The dynamic range is 10(-6)-10(-1) mol L(-1) with a response time of less than 5 s. These parameters are comparable to those of corresponding potentiometric calcium selective electrodes (ISE). The Ca(2+)-ISCOM demonstrates good practical relevant selectivities against typical interfering ions for biomedical and environmental applications.  相似文献   

6.
7.
A new conductometric enzyme-based biosensor was developed for the determination of formaldehyde (FA) in aqueous solutions. The biosensor was prepared by cross-linking formaldehyde dehydrogenase from Pseudomonas putida with bovine serum albumin in saturated glutaraldehyde vapours (GA) at the surface of interdigitated gold microelectrodes. Nicotinamide adenine dinucleotide cofactor (NAD+) was added in solution at each measurement to maintain enzyme activity. Addition of a Nafion layer over the enzyme modified electrode resulted in a significant increase of biosensor signal due to enhanced accumulation of protons generated by enzymatic reaction at the electrode surface. Different parameters affecting enzyme activity or playing a role in ionic transfer through the Nafion membrane were optimised. In optimal conditions (0.045 mg enzyme, 30 min exposure to GA, 0.3 μL of a 1 % (v/v) Nafion solution deposit, measurement in 5 mM phosphate buffer pH 7 containing 20 μM NAD+), the biosensor signal was linear up to 10 mM FA, and the detection limit was 18 μM. Relative standard deviations calculated from five consecutive replicates of FA solutions were lower than 5 % in the 1–10 mM range. The biosensor was successfully applied to the determination of FA in spiked water samples (tap water and Rhone river water), with recoveries in the 95–110 % range.
Figure
?  相似文献   

8.
Summary The electronic absorption spectra of someSchiff bases derived from 3-amino-1,2,4-triazole have been investigated in organic solvents of different polarities. Assignment of the absorption bands, solvent effects, and spectral structure correlations are considered. The fundamental IR bands and the main signals in the1H NMR spectra are assigned and discussed with respect to the effect of substituents on the phenyl ring. A change of the electrical conductance of the compounds with increasing temperature is observed for the solid samples.
Spektroskopische und konduktometrische Untersuchungen einigerSchiffscher Basen
Zusammenfassung Die UV/Vis-Spektren einiger von 3-Amino-1,2,4-triazol abgeleiteterSchiffscher Basen wurden in Lösungsmitteln unterschiedlicher Polarität bezüglich Zuordnung der Banden, Lösungsmitteleffekten und Spektrum-Struktur — Korrelationen untersucht. Die wesentlichen IR- und1H-NMR — Signale wurden zugeordnet und werden mit Substituenteneffekten in Beziehung gesetzt. Im Festzustand zeigen die Proben eine Änderung der elektrischen Leitfähigkeit mit steigender Temperatur.
  相似文献   

9.
New pH- and sodium ion-sensitive metal-oxide-type sensors have been developed and tested with a direct solid state contact method. Performance was demonstrated at ambient temperature with single crystals of several molybdenum bronzes (i.e. Na0.9Mo6O17, Li0.9Mo6O17, Li0.33MoO3 and K0.3MoO3). The pH sensors with Na-molybdenum-oxide bronzes show near ideal Nernstian behavior in the pH range 3–9. The response is not affected by the direction of the pH change. The response time of most molybdenum bronze pH sensors is less than 5 s for 90% response. The sodium molybdenum bronze sensor responded reproducibly and fast to changes of Na+ concentration in the range 1–10–4 mol dm–3. Cross sensitivity tests to other ions such as H+ or K+ have shown that the new sodium ion sensor may be used when the concentration of other ions is an order of magnitude smaller than the Na+ concentration. pH sensors with single crystals of molybdenum oxide bronzes can be used to follow pH titrations. Electronic Publication  相似文献   

10.
A new class of highly luminescent dyes is reported. The characteristic feature of these compounds is that a terpyridine fragment is closely appended to a boradiazaindacene moiety in such a way that cation binding to the vacant terpyridine causes strong perturbations of the photophysical properties of the boradiazaindacene unit. In particular, these sensors are especially applicable to the fluorescence detection of trace quantities of zinc(II) ions in solution. The mechanism of the cation-induced quenching process has been investigated by a combination of electrochemistry, UV/Vis absorption, emission, and NMR spectroscopy. Highly luminescent arrays can be formed by doping transparent polymers with low concentrations of these new dyes. In such materials, the change in photophysical properties upon cation binding is so marked that "cation writing" becomes feasible under routine conditions.  相似文献   

11.
有机硼化合物中硼原子空的pπ轨道使其作为路易斯酸能够选择性的结合氟离子,其与氟离子的结合破坏了硼中心与芳香取代基的pπ-π共轭,引起有机硼化合物光物理性质的变化。因此,有机硼化合物能够用作高选择性的氟离子化学传感器材料。本文从具有三芳基硼结构及硼酸或硼酸酯结构的这两类有机硼化合物出发,综述了它们在氟离子化学传感器领域的研究进展。  相似文献   

12.
Jiménez-Cadena G  Riu J  Rius FX 《The Analyst》2007,132(11):1083-1099
Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.  相似文献   

13.
Single?Clayered graphene, emerging as a true two?Cdimensional nanomaterial, has tremendous potential for electrochemical catalysis and biosensing as a novel electrode material. Considering the excellent properties of graphene, such as large surface?Cto?Cvolume ratio, high conductivity and electron mobility at room temperature, low energy dynamics of electrons with atomic thickness, robust mechanical and flexibility, we give a general view of recent advances in electrochemical sensors based on graphene. We are highlighting here important applications of graphene and graphene nanocomposites, and the assay strategies in electrochemical sensors for DNA, proteins, neurotransmitters, phytohormones, pollutants, metal ions, gases, hydrogen peroxide, and in medical, enzymatic and immunosensors.
Graphical Abstract
Graphene, a recent star carbon nanomaterial with lots of excellent properties, has caused increasing interests on the development of new-types graphene-based electrochemical sensors including DNA and protein sensor, enzyme based sensor, immunosensor, neurotransmitter sensor, medicine sensor, phytohormone sensor, pollutants sensor, metals ion sensor, gas sensor, and H2O2 sensor  相似文献   

14.
15.
The sol-gel technology is being increasingly used for the development of optical sensors and biosensors, due to its simplicity and versatility. By this process, porous thin films incorporating different chemical and biochemical sensing agents are easily obtained at room temperature, allowing final structures with mechanical and thermal stability as well as good optical characteristics. In this article, an overview of the state-of-the-art of sol-gel thin films-based optical sensors is presented. Applications reviewed include sensors for determination of pH, gases, ionic species and solvents, as well as biosensors.  相似文献   

16.
The properties of solvent polymeric membrane sensors based on 5,10,15,20-tetraphenylporphyrin (TPP) and phthalocyanine (PHC) have been investigated. The sensitivity and selectivity of sensors towards wide range of mono- and di-valent cations have been measured. The selectivity towards the transition metal ions for TPP-based sensor does not correspond to the cation lipophilicity sequence. The dependence of response on pH was studied. The cross-sensitivity parameters, including average response slope, signal-to-noise ratio and “non-selectivity” factor for all sensors were calculated and compared. The influence of plasticizer and ionic additive on the response of sensors was characterized using principal component analysis (PCA).  相似文献   

17.
Metal and semiconductor nanoparticles exhibit unique optical, electrical, thermal and catalytic properties. Therefore, they have attracted considerable interest and have been employed for construction of various electrochemical sensors. This minireview gives a general view of recent advances in electrochemical sensor development based on metal and semiconductor nanoparticles covering genosensors, protein and enzyme-based sensors, gas sensors and sensor for other organic and inorganic substances. Different assay strategies based on metal and semiconductor nanoparticles for biosensor and bioelectronic applications are presented, including electrochemical, electrical, and magnetic signal transduction techniques. Electrochemical transduction principles provide signal changes in conductance, charge, potential and current. We have paid much attention to the potential-based and current-based sensors herein. Lastly, a brief introduction is given into advances concerning the role of nanoparticles, quantum dots and nanowires for nanomedicine, such as drug delivery and discovery.  相似文献   

18.
Biological and chemical sensors based on graphene materials   总被引:2,自引:0,他引:2  
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).  相似文献   

19.
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ~6) and green when the medium is more basic (>~7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号