首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For one-dimensional kinetic BGK models, regarded as relaxation models for scalar conservation laws with genuinely nonlinear fluxes, we prove that the macroscopic density converges to the rarefaction wave solution of the corresponding scalar conservation law in the long time limit, and that the phase space density approaches an equilibrium distribution with the rarefaction wave as macroscopic density. The proof requires a smallness assumption on the amplitude of the rarefaction waves and uses a micro-macro decomposition of the perturbation equation.  相似文献   

2.
We investigate the decay rates of the planar viscous rarefaction wave of the initial-boundary value problem to scalar conservation law with degenerate viscosity in several dimensions on the half-line space, where the corresponding one-dimensional problem admits the rarefaction wave as an asymptotic state. The analysis is based on the standard L2-energy method and L1-estimate.  相似文献   

3.
本文讨论单个粘性守恒律方程与具有粘性的p方程组的Cauchy问题.根据初始资料的不同情形,其相应的Riemann问题以疏散波,激波或它们的迭加为弱解.本文的目的是指出Cauchy问题的解将分别趋于疏散波,激波或它们的迭加.本文基本方法是能量积分法.文中综述了现有的成果,也提出了一些未解决的问题.  相似文献   

4.
In this paper, we are concerned with the Vlasov–Poisson–Boltzmann (VPB) system in three-dimensional spatial space without angular cutoff in a rectangular duct with or without physical boundary conditions. Near a local Maxwellian with macroscopic quantities given by rarefaction wave solution of one-dimensional compressible Euler equations, we establish the time-asymptotic stability of planar rarefaction wave solutions for the Cauchy problem to VPB system with periodic or specular-reflection boundary condition. In particular, we successfully introduce physical boundaries, namely, specular-reflection boundary, to the models describing wave patterns of kinetic equations. Moreover, we treat the non-cutoff collision kernel instead of the cutoff one. As a simplified model, we also consider the stability and large time behavior of the rarefaction wave solution for the Boltzmann equation.  相似文献   

5.
This paper is devoted to study the bifurcation phenomenon for scalar conservation laws with flux functions involving discontinuous coefficients. In order to deal with it, the special Cauchy initial data are taken and the interactions of stationary wave discontinuities with shock waves and rarefaction waves are considered in detail. The global solutions of this special Cauchy problem are constructed completely when the bifurcation phenomena appear in their solutions.  相似文献   

6.
In this paper, we design stable and accurate numerical schemes for conservation laws with stiff source terms. A prime example and the main motivation for our study is the reactive Euler equations of gas dynamics. Furthermore, we consider widely studied scalar model equations. We device one-step IMEX (implicit-explicit) schemes for these equations that treats the convection terms explicitly and the source terms implicitly.For the non-linear scalar equation, we use a novel choice of initial data for the resulting Newton solver and obtain correct propagation speeds, even in the difficult case of rarefaction initial data. For the reactive Euler equations, we choose the numerical diffusion suitably in order to obtain correct wave speeds on under-resolved meshes.We prove that our implicit-explicit scheme converges in the scalar case and present a large number of numerical experiments to validate our scheme in both the scalar case as well as the case of reactive Euler equations.Furthermore, we discuss fundamental differences between the reactive Euler equations and the scalar model equation that must be accounted for when designing a scheme.  相似文献   

7.
Two-dimensional Riemann problem for scalar conservation law are investigated and classification of global structure for its non-selfsimilar solution is given by analysis of structure and classification of envelope for non-selfsimilar 2D rarefaction wave. Initial data has two different constant states which are separated by initial discontinuity. We propose the concepts of plus envelope, minus envelope and mixed envelope, and some new structures and evolution phenomena are discovered by use of these concepts.  相似文献   

8.
This paper is devoted to studying the interactions of elementary waves for a model of a scalar conservation law with a flux function involving discontinuous coefficients. In order to cover all the situations completely, we take the initial data as three piecewise constant states and the middle region is regarded as the perturbed region with small distance. It is proved that the Riemann solutions are stable under the local small perturbations of the Riemann initial data by letting the perturbed parameter tend to zero. The proof is based on the detailed analysis of the interactions of stationary wave discontinuities with shock waves and rarefaction waves. Moreover, the global structures and large time asymptotic behaviors of the solutions are constructed and analyzed case by case.  相似文献   

9.
This study is concerned with the large time behavior of the two-dimensional compressible Navier-Stokes-Korteweg equations, which are used to model compressible fluids with internal capillarity. Based on the fact that the rarefaction wave, one of the basic wave patterns to the hyperbolic conservation laws is nonlinearly stable to the one-dimensional compressible Navier-Stokes-Korteweg equations, the planar rarefaction wave to the two-dimensional compressible Navier-Stokes-Korteweg equations is first derived. Then, it is shown that the planar rarefaction wave is asymptotically stable in the case that the initial data are suitably small perturbations of the planar rarefaction wave. The proof is based on the delicate energy method. This is the first stability result of the planar rarefaction wave to the multi-dimensional viscous fluids with internal capillarity.  相似文献   

10.
In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the time-decay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.  相似文献   

11.
1.IntroductionConsiderthehyperbolicconservationlaws:Theresearchofnumericalmethodsforequations(1.1)hasbeendevelopedrapidlyinthisdecade.SincetheappearanceoftheconceptofTVD(totalvariationdiminishing)schemes,varioushighresolutionschemeshavebeenproposedl1,2,3l4]andsuccessfullyappliedtocomputationalfluiddynamics-ItiswellknownthattheconvergenceofthenumericalmethodsforhyperbolicconservationlawsdependsontheentroPyconditionofthenumericalsolutionsl5].Previouslytheconstructionofdifferenceschemeswasalway…  相似文献   

12.
1 引  言考虑非齐次守恒律方程ut+f(u) x =g(u) ,   -∞ 0 ,(1 .1 )u(x,0 ) =u0 (x) ,   -∞ 0 , (1 .5)g∈ C3且 g是 Lipschitz连续的 ,Lipschitz系数为 L . (1 .6 )对于一般守恒律齐次方程 ,粘性解逼近熵解的收敛阶为 O(ε ) [1 ] .在 f严格凸的条件下 ,其收敛速度可以提高到 O(ε|lnε|+ε) [2 ] ,[3] .本文考虑具有条件 (1 .5) (1 .6 )的非齐次方程(1 .1 ) ,在较广泛的一类初值条件下…  相似文献   

13.
We prove that the Riemann solutions are stable for a nonstrictly hyperbolic system of conservation laws under local small perturbations of the Riemann initial data. The proof is based on the detailed analysis of the interactions of delta shock waves with shock waves and rarefaction waves. During the interaction process of the delta shock wave with the rarefaction wave, a new kind of nonclassical wave, namely a delta contact discontinuity, is discovered here, which is a Dirac delta function supported on a contact discontinuity and has already appeared in the interaction process for the magnetohydrodynamics equations [M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl. 344 (2008) 1143-1157]. Moreover, the global structures and large time asymptotic behaviors of the solutions are constructed and analyzed case by case.  相似文献   

14.
This paper is concerned with the inflow problem for the one-dimensional compressible Navier–Stokes equations. For such a problem, Matsumura and Nishihara showed in [10] that there exists boundary layer solution to the inflow problem, and that both the boundary layer solution, the rarefaction wave, and the superposition of boundary layer solution and rarefaction wave are nonlinear stable under small initial perturbation. The main purpose of this paper is to show that similar stability results for the boundary layer solution and the supersonic rarefaction wave still hold for a class of large initial perturbation which can allow the initial density to have large oscillation. The proofs are given by an elementary energy method and the key point is to deduce the desired lower and upper bounds on the density function.  相似文献   

15.
The paper is concerned with time-asymptotic behavior of solution near a local Maxwellian with rarefaction wave to a fluid-particle model described by the Vlasov-Fokker-Planck equation coupled with the compressible and inviscid fluid by Euler-Poisson equations through the relaxation drag frictions, Vlasov forces between the macroscopic and microscopic momentums and the electrostatic potential forces. Precisely, based on a new micro-macro decomposition around the local Maxwellian to the kinetic part of the fluid-particle coupled system, which was first developed in [16], we show the time-asymptotically nonlinear stability of rarefaction wave to the one-dimensional compressible inviscid Euler equations coupled with both the Vlasov-Fokker-Planck equation and Poisson equation.  相似文献   

16.
The main purpose of this paper is to study the asymptotic equivalence of the Boltzmann equation for the hard-sphere collision model to its corresponding Euler equations of compressible gas dynamics in the limit of small mean free path. When the fluid flow is a smooth rarefaction (or centered rarefaction) wave with finite strength, the corresponding Boltzmann solution exists globally in time, and the solution converges to the rarefaction wave uniformly for all time (or away from t=0) as ?→0. A decomposition of a Boltzmann solution into its macroscopic (fluid) part and microscopic (kinetic) part is adopted to rewrite the Boltzmann equation in a form of compressible Navier-Stokes equations with source terms. In this setting, the same asymptotic equivalence of the full compressible Navier-Stokes equations to its corresponding Euler equations in the limit of small viscosity and heat conductivity (depending on the viscosity) is also obtained.  相似文献   

17.
Summary. The main drawback with Roe's approximate Riemann solver is that non-physical expansion shocks can occur in the vicinity of sonic points. Previous work aimed at enforcing the entropy condition is based on the representation of sonic rarefaction waves. We propose a new non-parameterized approach which is based on a nonlinear Hermite interpolation of an approximate flux function and the exact resolution of non convex scalar Riemann problems. Convergence and consistency with the entropy condition are proved for scalar convex conservation laws with arbitrarily large initial data. When considering strictly hyperbolic systems of conservation laws, consistency of the resulting scheme with the entropy condition is also proved for initial data sufficiently close to a constant. Numerical results on a one-dimensional shock-tube and a two-dimensional supersonic forward facing step confirm our theoretical results. Received March 1, 1993 / Revised version received August 26, 1994  相似文献   

18.
In this work a first order accurate semi-conservative composite scheme is presented for hyperbolic conservation laws. The idea is to consider the non-conservative form of conservation law and utilize the explicit wave propagation direction to construct semi-conservative upwind scheme. This method captures the shock waves exactly with less numerical dissipation but generates unphysical rarefaction shocks in case of expansion waves with sonic points. It shows less dissipative nature of constructed scheme. In order to overcome it, we use the strategy of composite schemes. A very simple criteria based on wave speed direction is given to decide the iterations. The proposed method is applied to a variety of test problems and numerical results show accurate shock capturing and higher resolution for rarefaction fan.  相似文献   

19.
This paper studies the combination of rarefaction wave and shock wave for the hyperbolic conservation laws and establishes the local existence of such combination of waves in the multi-dimensional space.  相似文献   

20.
We consider a generalized version of Hughes’ macroscopic model for crowd motion in the one-dimensional case. It consists in a scalar conservation law accounting for the conservation of the number of pedestrians, coupled with an eikonal equation giving the direction of the flux depending on pedestrian density. As a result of this non-trivial coupling, we have to deal with a conservation law with space–time discontinuous flux, whose discontinuity depends non-locally on the density itself. We propose a definition of entropy weak solution, which allows us to recover a maximum principle. Moreover, we study the structure of the solutions to Riemann-type problems, and we construct them explicitly for small times, depending on the choice of the running cost in the eikonal equation. In particular, aiming at the optimization of the evacuation time, we propose a strategy that is optimal in the case of high densities. All results are illustrated by numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号