首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple dispersive liquid–liquid microextraction based on solidification of floating organic droplet coupled with high-performance liquid chromatography–diode array detection was developed for the determination of five organophosphorus pesticides (OPs) in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL−1 for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were in the range between 0.1 and 0.3 ng mL−1. The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL−1 were 82.2–98.8% and 83.6–104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method was suitable for the determination of the OPs in real water samples.  相似文献   

2.
A new dispersive liquid–liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of volatile aldehyde biomarkers (hexanal and heptanal) in human blood samples. In the derivatization and extraction procedure, 2,4-dinitrophenylhydrazine (DNPH) as derivatization reagent and formic acid as catalyzer were injected into the sample solution for derivatization with aldehydes, then the formed hydrazones was rapidly extracted by dispersive liquid–liquid microextraction with 1-dodecanol as extraction solvent. After centrifugation, the floated droplet was solidified in an ice bath and was easily removed for analysis. The effects of various experimental parameters on derivatization and extraction conditions were studied, such as the kind and volume of extraction solvent and dispersive solvent, the amount of derivatization reagent, derivatization temperature and time, extraction time and salt effect. The limit of detections (LODs) for hexanal and heptanal were 7.90 and 2.34 nmol L−1, respectively. Good reproducibility and recovery of the method were also obtained. The proposed method is an alternative approach to the quantification of volatile aldehyde biomarkers in complex biological samples, being more rapid and simpler and providing higher sensitivity compared with the traditional dispersive liquid–liquid microextraction (DLLME) methods.  相似文献   

3.
A novel, simple and rapid method, termed dispersive liquid–liquid microextraction with solidification of floating organic drop coupled to high performance liquid chromatography, was developed for analysis of three phenolic oestrogens including diethylstilbestrol, dienestrol and hexestrol in human urine and water samples. The parameters of dispersive liquid–liquid microextraction with solidification of floating organic drop procedure including sample pH, type and volume of disperser solvent, and type and volume of extraction solvent were optimised. High performance liquid chromatography was applied for the phenolic oestrogens’ analysis. Under the optimum extraction and detection conditions, excellent analytical performances were attained. Good linear relationships (r ≥ 0.998) between peak area and concentration for diethylstilbestrol and dienestrol were optimised from 0.1 to 20 µg/mL, for hexestrol from 2 to 50 µg/mL. Method detection limits of 28.6–666.7 ng/mL were achieved. Satisfactory relative recoveries ranging from 72% to 122% were determined for urine, lake and tap water samples, with relative standard deviations (RSDs, n = 6) of 1.5–9.8%. The developed dispersive liquid–liquid microextraction with solidification of floating organic drop-high performance liquid chromatography method has a great potential in routine residual analysis of trace phenolic oestrogens in biological and water samples.  相似文献   

4.
Dispersive liquid–liquid microextraction with solidification of floating organic drop (DLLME-SFO) is one of the most interesting sample preparation techniques developed in recent years. Although several applications have been reported, the potentiality and limitations of this simple and rapid extraction technique have not been made sufficiently explicit. In this work, the extraction efficiency of DLLME-SFO for pollutants from different chemical families was determined. Studied compounds include: 10 polycyclic aromatic hydrocarbons, 5 pesticides (chlorophenoxy herbicides and DDT), 8 phenols and 6 sulfonamides, thus, covering a large range of polarity and hydrophobicity (Log Kow 0–7, overall). After optimization of extraction conditions using 1-dodecanol as extractant, the procedure was applied for extraction of each family from 10-mL spiked water samples, only adjusting sample pH as required. Absolute recoveries for pollutants with Log Kow 3–7 were >70% and recovery values within this group (18 compounds) were independent of structure or hydrophobicity; the precision of recovery was very acceptable (RSD < 12%) and linear behavior was observed in the studied concentration range (r2 > 0.995). Extraction recoveries for pollutants with Log Kow 1.46–2.8 were in the range 13–62%, directly depending on individual Log Kow values; however, good linearity (r2 > 0.993) and precision (RSD < 6.5%) were also demonstrated for these polar solutes, despite recovery level. DLLME-SFO with 1-dodecanol completely failed for extraction of compounds with Log Kow ≤ 1 (sulfa drugs), other more polar extraction solvents (ionic liquids) should be explored for highly hydrophilic pollutants.  相似文献   

5.
A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples. Figure Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples  相似文献   

6.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

7.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

8.
A new concept of liquid–liquid–liquid microextraction (LLLME) was introduced based on applying two immiscible organic solvents in lumen and wall pores of hollow fiber (HF). With this methodology, analytes of interest can be extracted from aqueous sample, into a thin layer of organic solvent (dodecane) sustained in the pores of a porous hollow fiber, and further into a μL volume of organic acceptor (acetonitrile or methanol) located inside the lumen of the hollow fiber. Some chlorophenols (CPs) were selected as model compounds for developing and evaluating of the method performance. The analysis was performed by gas chromatography–electron capture detection (GC–ECD) without derivatization. The factors affecting the HF-LLLME of target compounds were investigated and the optimal extraction conditions were established. Under the optimum conditions, preconcentration factors in a range of 208–895 were obtained. The performance of the proposed method was studied in terms of linear dynamic ranges (LDRs from 0.02 to 100 ng mL−1), linearity (R2 ≥ 0.995), precision (RSD % ≤ 8.1) and limits of detection (LODs in the range of 0.006–0.2 ng mL−1). In addition to preconcentration, HF-LLLME also served as a technique for sample clean-up.  相似文献   

9.
An analytical method for the simultaneous determination of 12 additives in beverages was developed using evaporation-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets EVA-DLLME-SFOcombined with high performance liquid chromatography HPLC. The samples were extracted twice with 70%V/Vmethanol aqueous solution and extracted by EVA-DLLME-SFO method after the combination of the extractsand finally determined by HPLC. Extraction parameterssuch as types and amounts of extractantevaporant and heating agentthe concentration of saltand the extraction time were optimized. Under the optimized conditionsthere were good relationships in the ange of 0.25-50 μµg/mL with the limits of detection of 1.5 to 13.6 mg/kg and limits of quantification of 5.2 to 45.3 mg/kg. The recoveries at three spiked levels1025 and 50 mg/kgwere 76.8% to 101.2% with the relative standard deviations of 0.11% to 4.7%. The method can be used for rapid detection of 12 additives in beverages. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

10.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   

11.
A new analytical method for the determination of four hydroxylated benzophenone UV filters (i.e. 2-hydroxy-4-methoxybenzophenone (HMB), 2,4-dihydroxybenzophenone (DHB), 2,2′-dihydroxy-4-methoxybenzophenone (DHMB) and 2,3,4-trihydroxybenzophenone (THB)) in sea water samples is presented. The method is based on dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) determination. The variables involved in the DLLME process were studied. Under optimized conditions, 1000 μL of acetone (disperser solvent) containing 60 μL of chloroform (extraction solvent) were injected into 5 mL of aqueous sample adjusted to pH 4 and containing 10% NaCl. Before injecting into the GC–MS system, the DLLME extracts were evaporated under an air stream and then reconstituted with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA), thus allowing the target analytes to be converted into their trimethylsilyl derivatives. The best conditions for the derivatization reaction were 75 °C and 30 min. High enrichment factors for all the target analytes (ranging from 58 to 64) and good repeatability (RSD around 6%) were obtained. The limits of detection were in the range of 32–50 ng L−1, depending on the analyte. The recoveries obtained by using the proposed DLLME–GC–MS method evidenced the presence of matrix effects for some of the target analytes, and thereby the standard addition calibration method was employed. Finally, the validated method was applied to the analysis of sea water samples.  相似文献   

12.
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples.  相似文献   

13.
This paper describes a novel, simple and environmentally friendly method for rapid determination of the amide herbicides metoalchlor, acetochlor, and butachlor. It is based on dispersive liquid-liquid microextraction and gas chromatography–mass spectrometry. Factors that may influence the enrichment efficiency, such as type and volume of extraction solvent, type and volume of dispersive solvent, extraction time, and content of NaCl, were investigated and optimized in detail. Under the optimum conditions, the limits of detection of metoalchlor, acetochlor, and butachlor were 0.02, 0.04, and 0.003 μg L−1, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg L−1 and good reproducibility with relative standard deviations over the range 1.6–3.0% (n = 5). The proposed method has been applied for the analysis of real-world water samples, and satisfactory results were achieved. Average recoveries of spiked herbicides were in the range 80.3–108.8%. All of these indicated that the developed method would be an efficient method for simultaneous determination of the three herbicides in environmental water samples.  相似文献   

14.
Single-drop microextraction (SDME) followed by gas chromatography–mass spectrometry detection was used for the determination of some carbamate pesticides in water samples. The studied pesticides were thiofanox, carbofuran, pirimicarb, methiocarb, carbaryl, propoxur, desmedipham and phenmedipham. Two alternative sample introduction methods have been examined and compared; SDME followed by cool on-column injection (without derivatization) and SDME followed by in-microvial derivatization and splitless injection. Acetic anhydride was used as derivatization reagent. Parameters that affect the derivatization reaction yield and the extraction efficiency of the SDME method were studied and optimized. The analytical performances and possible applications of both approaches were investigated. Relative standard deviations for the studied compounds ranged from 3.2 to 8.3%. The detection limits obtained by the derivatization method were found to be in the range 3–35 ng/L. Using cool on-column injection (without derivatization), the detection limits were between 30 and 80 ng/L.  相似文献   

15.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

16.
In this work, solid-phase microextraction coupled with gas chromatography–mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extraction material and its composite was coated on a stainless steel wire through sol–gel technique for the solid phase microextraction. The key parameters influencing the extraction efficiency were optimized. Under the optimal conditions, the linearity for the compounds was observed in the range of 0.02–15.0 mg/L for water samples, and 0.2–60.0 mg/kg for soil samples, with the correlation coefficients(r) of 0.9966–0.9987. The limits of detection of the method were 0.0025–0.005 mg/L for water samples, and 0.02–0.04 mg/kg for soil samples. The recoveries for the spiked samples were in the range of 72.0%–113.2%, and the precision, expressed as the relative standard deviations, was less than 12.1%.  相似文献   

17.
A novel sample preparation method “Dispersive liquid–liquid–liquid microextraction” (DLLLME) was developed in this study. DLLLME was combined with liquid chromatography system to determine chlorophenoxy acid herbicide in aqueous samples. DLLLME is a rapid and environmentally friendly sample pretreatment method. In this study, 25 μL of 1,1,2,2-tetrachloroethane was added to the sample solution and the targeted analytes were extracted from the donor phase by manually shaking for 90 s. The organic phase was separated from the donor phase by centrifugation and was transferred into an insert. Acceptor phase was added to this insert. The analytes were then back-extracted into the acceptor phase by mixing the organic and acceptor phases by pumping those two solutions with a syringe plunger. After centrifugation, the organic phase was settled and removed with a microsyringe. The acceptor phase was injected into the UPLC system by auto sampler. Fine droplets were formed by shaking and pumping with the syringe plunger in DLLLME. The large interfacial area provided good extraction efficiency and shortened the extraction time needed. Conventional LLLME requires an extraction time of 40–60 min; an extraction time of approximately 2 min is sufficient with DLLLME. The DLLLME technique shows good linearity (r2 ≥ 0.999), good repeatability (RSD: 4.0–12.2% for tap water; 5.7–8.5% for river water) and high sensitivity (LODs: 0.10–0.60 μg/L for tap water; 0.11–0.95 μg/L for river water).  相似文献   

18.
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples.  相似文献   

19.
A method termed dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detection (HPLC-VWD) was developed. DLLME-HPLC-VWD is a method for determination of bisphenol A (BPA) in water samples. In this microextraction method, several parameters such as extraction solvent volume, sample volume, disperser solvent, ionic strength, pH, and disperser volume were optimised with the aid of interactive orthogonal array and a mixed level experiment design. First, an orthogonal array design was used to screen the significant variables for the optimisation. Second, the significant factors were optimised by using a mixed level experiment. Under the optimised extraction conditions (extraction solvent: ionic liquid [C6MIM][PF6], 60 µL; dispersive solvent: methanol, 0.4 mL; and pH = 4.0), the performance of the established method was evaluated. The response linearity of the method was observed in a range of 0.002–1.0 mg L?1 (three orders of magnitude) with correlation coefficient (R 2) of 0.9999. The repeatability of this method was 4.2–5.3% for three different BPA levels and the enrichment factors were above 180. The extraction recovery was about 50% for the three different concentrations with 3.4–6.4% of RSD. Limit of detection of the method was 0.40 µg L?1 at a signal-to-noise ratio of 3. In addition, the relative recovery of sample of Songhua River, tap water and barrel-drain water at different spiked concentration levels was ranged 95.8–103.0%, 92.6–98.6% and 87.2–95.3%, respectively. Compared with other extraction technologies, there have been the following advantages of quick, easy operation, and time-saving for the present method.  相似文献   

20.
A rapid and sensitive method has been developed for the determination of biphenyl and biphenyl oxide in water samples using dispersive liquid–liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (8.0?µL tetrachloroethylene) and disperser solvent (1.0?mL acetonitrile) for the formation of cloudy solution in 5.0?mL aqueous sample containing biphenyl and biphenyl oxide. After extraction, phase separation was performed by centrifugation and biphenyl and biphenyl oxide in sedimented phase (5.0?±?0.3?µL) were determined by gas chromatography-flame ionisation (GC-FID) system. Type of extraction and disperser solvents and their volumes, salt effect on the extraction recovery of biphenyl and biphenyl oxide from aqueous solution have been investigated. Under the optimum conditions and without salt addition, the enrichment factors for biphenyl and biphenyl oxide were 819 and 785, while the extraction recovery were 81.9% and 78.5%, respectively. The linear range was (0.125–100?µg L?1) and limit of detection was (0.015?µg?L?1) for both analytes. The relative standard deviation (RSD, n?=?4) for 5.0?µg?L?1 of analytes were 8.4% and 6.7% for biphenyl and biphenyl oxide, respectively. The relative recoveries of biphenyl and biphenyl oxide from sea, river water and refined water (Paksan company) samples at spiking level of 5.0?µg?L?1 were between 85.0% and 100 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号