首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, simple method based on magnetically assisted chemical separation (MACS) has been developed for analytical purposes. In this method, neocuproine modified magnetic microparticles was used for selective extraction and preconcentration of copper(II) ions from aqueous solutions. The advantages of this method include consumption of organic solvents almost eliminated and applications on unclear (containing suspended particles) samples without any preliminary filtration step. This method combines simplicity and selectivity of solvent extraction with easy separation of magnetic microparticles from solution with magnet. In addition, it can be considered as a simple method for determination of partition coefficient. The influence of different parameters, such as presence of extractant, amount of extractant loaded on the microparticles, reducing agent, pH, equilibrium time, ionic strength, type and least amount of stripping solution and limit of detection, were evaluated. Also, the effects of various cationic and anionic interferences on the percent recovery of copper were studied. Copper ions were extracted from solution at pH 6 and were stripped from microparticles with 0.5 M HNO3. Extraction efficiencies for solutions with volumes up to 100 ml were >99%. Limit of detection was 1.5 μg/l. The method was applied to the recovery and determination of copper in different water samples.  相似文献   

2.
Narin I  Soylak M  Elçi L  Doğan M 《Talanta》2000,52(6):1041-1046
A simple preconcentration method is described for the determination of Cu, Mn, Co, Cd, Pb, Ni and Cr in water samples by flame AAS. Trace metal ions in water were sorbed as pyrocatechol violet complexes on activated carbon column at the pH range of 4–8, then eluted with 1 M HNO3 in acetone. The effect of major cations and anions of the natural water samples on the sorption of metal ions has been also investigated. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The present method was found to be applicable to the preconcentration of Cu, Mn, Co, Cd, Pb, Ni and Cr in natural water samples with good results such as R.S.D. from 3 to 8% (N=10) and detection limits under 70 ng l−1.  相似文献   

3.
A sensitive technique for the determination of trace Cu(II) in various samples after column preconcentration by adsorbing onto pulverized Amberlite XAD-4 loaded with N-benzoylphenylhydroxylamine (BPHA) was developed. Several experimental conditions, such as the size of XAD-4, adsorption flow rate, pH of sample solution, and so forth, were optimized. The interfering effects of diverse concomitant ions were investigated. Al(III), Fe(III), Ni(II), and Co(II) interfered, but the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BPHA resin to 0.30 g. The dynamic range, the correlation coefficient (R2), and the detection limit obtained by the proposed technique were 1.0–60, 0.9953, and 0.83 ng/mL, respectively. For validating the technique, the aqueous samples (stream water, reservoir water, and wastewater), the diluted brass sample, and the plastic sample were used as real samples. Recovery yields of 94–102% were obtained. These measured data were not different from ICP-MS data at the 95% confidence level. This method was also validated by rice flour CRM (normal, fortified) samples. Based on the results of the experiment, it has been found that the proposed technique can be applied to the determination of Cu(II) in various real samples. The text was submitted by the authors in English.  相似文献   

4.
This paper describes the application of organo nanoclay, an easily prepared and stable solid sorbent, to the preconcentration of trace amounts of palladium ions in aqueous solution. The organo nanoclay was prepared by adding tetradecyldimethylbenzylamonium chloride onto montmorillonite, which was then modified with 1-(2-pyridylazo)-2-naphthol. The modified nanoclay was used as a solid sorbent for separation and preconcentration of trace amounts of Pd(II) ions, and a simple, sensitive, and economical method was developed for determination of trace amounts of palladium by flame atomic absorption spectrometry. The sorption of Pd(II) ions was quantitative in the pH range of 1.5-5.0, whereas quantitative desorption occurred with 5.0 mL of a mixture containing 1.0 M thiourea and 1.0 M HCl. The RSD of the method was +/- 2.1% (n = 10; concn = 0.5 microg/mL), and the LOD (3sigma(bl); sigma = SD and bl = blank) was 0.1 ng/mL. The calibration curve was linear for concentrations of 0.5-8.0 microg/mL in the initial solution, and the preconcentration factor was 140. The maximum capacity of the sorbent was 2.4 mg Pd(II)/g modified organo nanoclay. The influences of the experimental parameters, including sample pH, eluant volume, eluant type, sample volume, and interfering ions, on the recoveries of the palladium ion were investigated. The proposed method was applied to the preconcentration and determination of palladium in different samples.  相似文献   

5.
A field oriented and economical method of coprecipitation of trace elements like Al, Au, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Pd, Ti, V, W, Zn and REE has been developed. A novel reductant D-glucose, reduces KMnO4 in solution to form a precipitate of MnO2. Two liters of clear natural water sample is adjusted to pH 3.5–4.0, and is treated with 10 ml of 1% KMnO4 and 20 ml of 0.1% D-glucose. The sample is heated at a temperature of 75–80 °C, MnO2 is formed which coprecipitates the above trace elements. The precipitate is separated by filtration, dissolved in 2 ml of 50% HCl and 2 ml of 30% H2O2 and diluted to 25 ml for analysis using AAS and ICP-AES. The recoveries were found to be 96–105%. The preconcentration factor is 80. Limits of determination by the proposed method in natural waters are 1 μg l−1 for Al, Cd, Mo, V, W, Ti and Zn, 5 μg l−1 for Au, Bi, Co, Cu, Fe, Ni, Pb and Pd and 8 μg l−1 for REE. The RSD of the present procedure (n=5) is 8% at 5 μg l−1 level. Twenty water samples can be analyzed by an analyst in an 8-h day.  相似文献   

6.
A cerium(IV) hydroxide coprecipitation method was developed for the determination of some trace elements (Cu, Co, Pb, Cd, Ni) in aqueous solutions, water and sediment samples by flame atomic absorption spectrometry (AAS). Several parameters governing the efficiency of the coprecipitation method were evaluated including pH of sample solution, amount of carrier element, volume of sample solution and the effect of possible matrix ions The procedure was validated by the analysis of GBW 07309 standard reference material sediment and by use of a method based on a solid phase extraction.  相似文献   

7.
Summary A method utilizing a miniature chelated ion-exchanger column of SO3-oxine CM-cellulose has been developed to increase the sensitivity for multielement measurements by inductively coupled plasma mass spectrometry (ICP-MS). This matrix/analyte separation and preconcentration technique has been used to preconcentrate Mn, Co, Ni, Cu, Cd, and Pb from natural water samples. The multielement detection limits are in the low ppt (pg/mL) range. This FIA-ICP-MS method has been applied to the determination of various trace levels of metal ions in riverine reference material SLRS-2 and open ocean seawater reference material NASS-3.  相似文献   

8.
A simple, rapid, sensitive and environmentally friendly separation and preconcentration procedure, based on the carrier element free coprecipitation (CEFC) of Cu(II) and Cd(II) ions by using an organic coprecipitant, 2-{[4-(4-fluorophenyl)-5-sulphanyl-4H-1,2,4-triazol-3-yl]methyl}-4-{[(4-fluorophenyl) methylene]amino}-5-(4-methylphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (MEFMAT) was developed. The analyte ions were determined by flame atomic absorption spectrometric (FAAS) determinations. The optimum conditions for the coprecipitation process were investigated on several commonly tested experimental parameters such as pH of the solution, amount of MEFMAT, sample volume, standing time, centrifugation rate and time. The influences of some anions, cations and transition metals on the recoveries of analyte ions were also investigated, and no considerable interference was observed. The preconcentration factor was found to be 50. The detection limits for Cu(II) and Cd(II) ions based on the three times the standard deviation of the blanks (N:10) were found to be 1.49 and 0.45 μg L− 1, respectively. The relative standard deviations were found to be lower than 3.5% for both analyte ions. The method was validated by analyzing two certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) and spike tests. The procedure was successfully applied to sea water and stream water as liquid samples and tobacco, hazelnut and black tea as solid samples.  相似文献   

9.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

10.
11.
The determination of trace elements in food and soil samples by atomic absorption spectrometry was investigated. A coprecipitation procedure with holmium hydroxide was used for separation-preconcentration of trace elements. Trace amounts of copper(II), manganese(II), cobalt(II), nickel(ll), chromium(lll), iron(Ill), cadmium(ll), and lead(ll) ions were coprecipitated with holmium hydroxide in 2.0 M NaOH medium. The optimum conditions for the coprecipitation process were investigated for several commonly tested experimental parameters, such as amount of coprecipitant, effect of standing time, centrifugation rate and time, and sample volume. The precision, based on replicate analysis, was lower than 10% for the analytes. In order to verify the accuracy of the method, the certified reference materials BCR 141 R calcareous loam soil and CRM 025-050 soil were analyzed. The procedure was successfully applied for separation and preconcentration of the investigated ions in various food and soil samples. An amount of the solid samples was decomposed with 15 mL concentrated hydrochloric acid-concentrated nitric acid (3 + 1). The preconcentration procedure was then applied to the final solutions. The concentration of trace elements in samples was determined by atomic absorption spectrometry.  相似文献   

12.
In this work, a new polymer resin with a functional groups capable of holding trace metals has been synthesized. The structure of polymer resin has been examined by BET-N2 method analyzer, IR spectrometer, scanning electron microscope (SEM) and elemental microanalyser. The synthesized polymer resin was used for the simultaneous separation and preconcentration of the trace metals from various tea and herbal plants samples. After extraction process, flame atomic absorption spectrometry (FAAS) was used to determine the trace metals. The analytical parameters and solid phase extraction (SPE) performance such as pH, sample volume, flow rates of sample, flow rates of eluent, concentration, volume and type of eluent and effect of interference ions, were investigated. The limits of detection (DL) of the SPE procedure for trace metals, were calculated to be (3s) in the range of 0.9?4.0 μg L?1 (n = 21) and the factors of preconcentration (PF) were obtained at 200 for Cd, Co, Cu, Fe, Ni and Zn, and at 50 for Cr, Mn and Pb ions and the relative standard deviation (RSD) at ≤ 2% (n = 11).  相似文献   

13.
A multi-element preconcentration-separation technique for heavy metal ions in environmental samples has been established. The procedure is based on coprecipitation of gold(III), bismuth(III), cobalt(II), chromium(III), iron(III), manganese(II), nickel(II), lead(II), thorium(IV) and uranium(VI) ions by the aid of Cu(II)-9-phenyl-3-fluorone precipitate. The Cu(II)-9-phenyl-3-fluorone precipitate was dissolved by the addition 1.0 mL of concentrated HNO3 and then the solution was completed to 5 mL with distilled water. Iron, lead, cobalt, chromium, manganese and nickel levels in the final solution were determined by flame atomic absorption spectrometer, while gold, bismuth, uranium and thorium were determined by inductively coupled plasma mass spectrometer. The optimal conditions are pH 7, amounts of 9-phenyl-3-fluorone: 5 mg and amounts of Cu(II): 1 mg. The effects of concomitant ions as matrix were also examined. The preconcentration factor was 30. Gold(III), bismuth(III), chromium(III), iron(III), lead(II) and thorium(IV) were quantitatively recovered from the real samples. The detection limits for the analyte elements based on 3 sigma (n = 15) were in the range of 0.05-12.9 μg L−1. The validation of the presented procedure was checked by the analysis of two certified reference materials (Montana I Soil (NIST-SRM 2710) and Lake Sediment (IAEA-SL-1)). The procedure was successfully applied to some environmental samples including water and sediments.  相似文献   

14.
Elçi L  Sahin U  Oztaş S 《Talanta》1997,44(6):1017-1023
A method for determination of trace amounts of Cu, Fe, Pb, Mn, Zn, Cd, Ni, Bi and Cr in aqueous solutions by flame atomic absorption spectrometry after coprecipitation by using a combination of sodium diethyldithiocarbamate as a chelating agent and cobalt as a carrier element was introduced. Different factors including amounts of reagents, pH of sample solution, standing time, sample volume for the precipitation and matrix effects were examined. Under selected conditions, the relative standard deviation of the combined method of sample treatment, coprecipitation and determination with flame AAS (n = 9) is generally about 3.5-6.9%; the limits of detection (3 s, n = 20) for the analytes were found to be between 4 and 64 microg 1(-1). The procedure was applied to the analysis of sea water and dialysis concentrate samples with quantitative recovery, > or =95%.  相似文献   

15.
16.
Basheer C  Lee HK 《Electrophoresis》2007,28(19):3520-3525
A facile, sensitive, and selective method was developed for the simultaneous separation and determination of copper(I) [Cu(+)] and copper(II) [Cu(2+)] ions using CE with direct UV detection. The copper ions were complexed with a 1.5 mM bicinchoninic acid disodium salt solution at pH 8.7 prior to analysis. Acetate buffer (2 mM) was used as the CE running buffer. Parameters affecting CE separation such as sample pH, applied voltage, concentration of complexing agent, nature of the buffer solution, and interferences by other metal ions, were evaluated. The LODs for Cu(+) and Cu(2+) were 3.0 and 2.5 microg/mL (S/N = 3), respectively. The developed method allows the simultaneous determination of Cu(+) and Cu(2+) in less than 5 min with RSDs of between 5.3 and 9.5% for migration time and between 3.4 and 9.7% for peak areas, respectively. At optimum conditions, the percentage recoveries of Cu(+) and Cu(2+) were found to be 99.4 and 99.5%.  相似文献   

17.
建立了用离子印迹壳聚糖/凹土(ⅡGA)分离富集-火焰原子吸收光谱(FAAS)测定痕量镉的新方法.在动态吸附条件下,系统地研究了溶液pH值、流速、洗脱条件和干扰离子对痕量镉分离富集的影响;在pH4.5、上样流速为0.60 mL/min的条件下,镉能被ⅡCA定量富集;吸附的镉可用1.0 mol/L HCl-0.1 mol/...  相似文献   

18.
建立了微晶蒽分离富集环境水样中痕量Co(II)的方法。在pH3.0条件下,1-亚硝基-2-萘酚与Co(II)形成红棕色螯合物被微晶蒽定量吸附,能使Co(II)与Pb(II)、Ni(II)、Mn(II)、Cu(II)、Cd(II)、Zn(II)、Fe(III)、Cr(III)、Al(III)等常见离子分离。本法富集倍数达100倍,检出限为0.14μg/L,回收率97.5%~105%,已应用于不同水样中Co(II)的测定。  相似文献   

19.
Bingöl D  Akçay M 《Talanta》2005,66(3):600-604
The fly ash samples obtained from Kangal Power Plant were prepared for FAAS analysis by a new approach. The trace elements of the fly ash samples were leached with appropriate solvents under suitable conditions. The leaching method is known as an effective technique for substances dissolving very hard and refractory materials. The leaching effects of solvents and their mixtures were investigated on fly ash samples that are used largely in analysis of soil and sediment samples.The fly ashes mainly consist of glassy aluminosilicates. The major components of the samples are SiO2, Al2O3, CaO and Fe2O3. Therefore, decomposition of the silicate lattice of the fly ash is required for liberation of trace elements. The dissolution process can be completed by using a mineral acid such as concentrated HCl. This technique has an advantage that the fly ash can be dissolved without any oxidation at room temperature.Maximum element recoveries were obtained by the procedure of 37% HCl leaching after the samples were treated with 2.0 ml of concentrated HF. It was also observed that maximum mass loss occurred in this procedure. The effect of the four leaching reagents, which are HCl, HNO3, HClO4 and HNO3 + HClO4, were investigated on fly ash samples that were treated with concentrated HF. An optimum leaching method was determined based on the confidence of analytical results and element recovery rates.  相似文献   

20.
To determine trace copper in water samples such as tap and rain water, neutron activation analysis preceded by chemical preconcentration was developed, in which copper was concentrated by adsorption on activated carbon powder using 8-quinlinol as an adjunct. Short-lived66Cu and long-lived64Cu were used as analytical radionuclides. It was demonstrated that copper can thus be detemined at a μg l−1 (ppb) level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号