首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Ko?hn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.  相似文献   

2.
We present a variational formulation of the recently-proposed CCSD(2)(R12) method [Valeev, Phys. Chem. Chem. Phys., 2008, 10, 106]. The centerpiece of this approach is the CCSD(2)(R12) Lagrangian obtained via L?wdin partitioning of the coupled-cluster singles and doubles (CCSD) Hamiltonian. Extremization of the Lagrangian yields the second-order basis set incompleteness correction for the CCSD energy. We also developed a simpler Hylleraas-type functional that only depends on one set of geminal amplitudes by applying screening approximations. This functional is used to develop a diagonal orbital-invariant version of the method in which the geminal amplitudes are fixed at the values determined by the first-order cusp conditions. Extension of the variational method to include perturbatively the effect of connected triples produces the method that approximates the complete basis-set limit of the standard CCSD plus perturbative triples [CCSD(T)] method. For a set of 20 small closed-shell molecules, the method recovered at least 94.5/97.3% of the CBS CCSD(T) correlation energy with the aug-cc-pVDZ/aug-cc-pVTZ orbital basis set. For 12 isogyric reactions involving these molecules, combining the aug-cc-pVTZ correlation energies with the aug-cc-pVQZ Hartree-Fock energies produces the electronic reaction energies with a mean absolute deviation of 1.4 kJ mol(-1) from the experimental values. The method has the same number of optimized parameters as the corresponding CCSD(T) model, does not require any modification of the coupled-cluster computer program, and only needs a small triple-zeta basis to match the precision of the considerably more expensive standard quintuple-zeta CCSD(T) computation.  相似文献   

3.
The basis set convergence of weak interaction energies for dimers of noble gases helium through krypton is studied for six variants of the explicitly correlated, frozen geminal coupled-cluster singles, doubles, and noniterative triples [CCSD(T)-F12] approach: the CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*) methods with scaled and unscaled triples. These dimers were chosen because CCSD(T) complete-basis-set (CBS) limit benchmarks are available for them to a particularly high precision. The dependence of interaction energies on the auxiliary basis sets has been investigated and it was found that the default resolution-of-identity sets cc-pVXZ/JKFIT are far from adequate in this case. Overall, employing the explicitly correlated approach clearly speeds up the basis set convergence of CCSD(T) interaction energies, however, quite surprisingly, the improvement is not as large as the one achieved by a simple addition of bond functions to the orbital basis set. Bond functions substantially improve the CCSD(T)-F12 interaction energies as well. For small and moderate bases with bond functions, the accuracy delivered by the CCSD(T)-F12 approach cannot be matched by conventional CCSD(T). However, the latter method in the largest available bases still delivers the CBS limit to a better precision than CCSD(T)-F12 in the largest bases available for that approach. Our calculations suggest that the primary reason for the limited accuracy of the large-basis CCSD(T)-F12 treatment are the approximations made at the CCSD-F12 level and the non-explicitly correlated treatment of triples. In contrast, the explicitly correlated second-order Mo?ller-Plesset perturbation theory (MP2-F12) approach is able to pinpoint the complete-basis-set limit MP2 interaction energies of rare gas dimers to a better precision than conventional MP2. Finally, we report and analyze an unexpected failure of the CCSD(T)-F12 method to deliver the core-core and core-valence correlation corrections to interaction energies consistently and accurately.  相似文献   

4.
We have investigated the slipped parallel and t-shaped structures of carbon dioxide dimer [(CO(2))(2)] using both conventional and explicitly correlated coupled cluster methods, inclusive and exclusive of counterpoise (CP) correction. We have determined the geometry of both structures with conventional coupled cluster singles doubles and perturbative triples theory [CCSD(T)] and explicitly correlated cluster singles doubles and perturbative triples theory [CCSD(T)-F12b] at the complete basis set (CBS) limits using custom optimization routines. Consistent with previous investigations, we find that the slipped parallel structure corresponds to the global minimum and is 1.09 kJ mol(-1) lower in energy. For a given cardinal number, the optimized geometries and interaction energies of (CO(2))(2) obtained with the explicitly correlated CCSD(T)-F12b method are closer to the CBS limit than the corresponding conventional CCSD(T) results. Furthermore, the magnitude of basis set superposition error (BSSE) in the CCSD(T)-F12b optimized geometries and interaction energies is appreciably smaller than the magnitude of BSSE in the conventional CCSD(T) results. We decompose the CCSD(T) and CCSD(T)-F12b interaction energies into the constituent HF or HF CABS, CCSD or CCSD-F12b, and (T) contributions. We find that the complementary auxiliary basis set (CABS) singles correction and the F12b approximation significantly reduce the magnitude of BSSE at the HF and CCSD levels of theory, respectively. For a given cardinal number, we find that non-CP corrected, unscaled triples CCSD(T)-F12b/VXZ-F12 interaction energies are in overall best agreement with the CBS limit.  相似文献   

5.
The hole-particle analysis introduced in the paper [J. Chem. Phys. 124, 224109 (2006)] is fully described and extended for coupled-cluster models of practical importance. Based on operator renormalization of the conventional amplitudes t(ai) and t(ab,ij), we present a simplified method for estimating the hole-particle density matrices for coupled-cluster singles and doubles (CCSD). With this procedure we convert the first-order density matrix of the configuration interaction (CI) singles and doubles (CISD) model, which lacks size consistency, into an approximately size-consistent expression. This permits us to correctly estimate specific indices for CCSD, including the hole and particle occupation numbers for each atom, the total occupation of holes/particles, and the entropylike measure for effective unpaired geminals. Our calculations for simple diatomic and triatomic systems indicate reasonable agreement with the full CI values. For CCSD and CISD we derive special types of two-center indices, which are similar to the charge transfer analysis of excited states previously given within the CIS model. These new quantities, termed charge transfer correlation indices, reveal the concealed effects of atomic influence on electronic redistribution due to electron correlation.  相似文献   

6.
The formalism for developing perturbation theory by using an arbitrary fixed (external) set of amplitudes as an initial approximation is presented in a compact form: external coupled-cluster perturbation theory (xCCPT). Nonperturbative approaches also fit into the formalism. As an illustration, the weakly interacting dimers Ne(2) and Ar(2) have been studied in the various ring-coupled-cluster doubles (CCD) approximations; ring, direct-ring, antisymmetrized ring, and antisymmetrized direct ring, and a second-order correction in the xCCPT approach is added. The direct approaches include the summation of just Coulomb terms with the intention of selectively summing the largest terms in the perturbation first. "Coulomb attenuation" is effected by taking the random phase approximation to define such amplitudes, whose results are then improved upon using perturbation theory. Interaction energies at the ring-CCD level are poor but the xCCPT correction employed predicts binding energies which are only a few percent from the coupled-cluster single double (triple) values for the direct ring-CCD variants. Using the MP2 amplitudes which neglect exchange, the initial Coulomb-only term, leads to very accurate Ne(2) and Ar(2) potentials. However, to accurately compute the Na(2) potential required a different initial wavefunction, and hence perturbation. The potential energy surfaces of Ne(2) and Ar(2) are much too shallow using linear coupled-cluster doubles. Using xCCPT(2) with these amplitudes as the initial wavefunction led to slightly worse results. These observations suggest that an optimal external set of amplitudes exists which minimizes perturbational effects and hence improve the predictability of methods.  相似文献   

7.
We propose to account for the large basis-set error of a conventional coupled-cluster energy and wave function by a simple perturbative correction. The perturbation expansion is constructed by L?wdin partitioning of the similarity-transformed Hamiltonian in a space that includes explicitly correlated basis functions. To test this idea, we investigate the second-order explicitly correlated correction to the coupled-cluster singles and doubles (CCSD) energy, denoted here as the CCSD(2)(R12) method. The proposed perturbation expansion presents a systematic and easy-to-interpret picture of the "interference" between the basis-set and correlation hierarchies in the many-body electronic-structure theory. The leading-order term in the energy correction is the amplitude-independent R12 correction from the standard second-order M?ller-Plesset R12 method. The cluster amplitudes appear in the higher-order terms and their effect is to decrease the basis-set correction, in accordance with the usual experience. In addition to the use of the standard R12 technology which simplifies all matrix elements to at most two-electron integrals, we propose several optional approximations to select only the most important terms in the energy correction. For a limited test set, the valence CCSD energies computed with the approximate method, termed , are on average precise to (1.9, 1.4, 0.5 and 0.1%) when computed with Dunning's aug-cc-pVXZ basis sets [X = (D, T, Q, 5)] accompanied by a single Slater-type correlation factor. This precision is a roughly an order of magnitude improvement over the standard CCSD method, whose respective average basis-set errors are (28.2, 10.6, 4.4 and 2.1%). Performance of the method is almost identical to that of the more complex iterative counterpart, CCSD(R12). The proposed approach to explicitly correlated coupled-cluster methods is technically appealing since no modification of the coupled-cluster equations is necessary and the standard M?ller-Plesset R12 machinery can be reused.  相似文献   

8.
Using the analytic derivatives approach, dipole moments of high-level density-fitted coupled-cluster (CC) methods, such as coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)], are presented. To obtain the high accuracy results, the computed dipole moments are extrapolated to the complete basis set (CBS) limits applying focal-point approximations. Dipole moments of the CC methods considered are compared with the experimental gas-phase values, as well as with the common DFT functionals, such as B3LYP, BP86, M06-2X, and BLYP. For all test sets considered, the CCSD(T) method provides substantial improvements over Hartree–Fock (HF), by 0.076–0.213 D, and its mean absolute errors are lower than 0.06 D. Furthermore, our results indicate that even though the performances of the common DFT functionals considered are significantly better than that of HF, their results are not comparable with the CC methods. Our results demonstrate that the CCSD(T)/CBS level of theory provides highly-accurate dipole moments, and its quality approaching the experimental results. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
Response theory up to infinite order is combined with the explicitly correlated coupled-cluster singles and doubles model including linear-r(12) corrections, CCSD(R12). The additional terms introduced by the linear-r(12) contributions, not present in the conventional CCSD calculation, are derived and discussed with respect to the extra costs required for their evaluation. An implementation is presented up to the cubic response function for one-electron perturbations, i.e., up to frequency-dependent second hyperpolarizabilities. As first applications the authors computed the electronic polarizabilities and second hyperpolarizabilities of BH, N(2), and formaldehyde and show that the improvement in the one-electron basis set convergence known from the R12 method for ground state energies is retained for higher-order optical properties. Frequency-dependent results are presented for the second hyperpolarizability of N(2).  相似文献   

10.
Completely renormalized (CR) coupled-cluster (CC) approaches, such as CR-CCSD(T), in which one corrects the standard CC singles and doubles (CCSD) energy for the effects of triply (T) and other higher-than-doubly excited clusters [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], are reformulated in terms of the left eigenstates Phimid R:L of the similarity-transformed Hamiltonian of CC theory. The resulting CR-CCSD(T)(L) or CR-CC(2,3) and other CR-CC(L) methods are derived from the new biorthogonal form of the method of moments of CC equations (MMCC) in which, in analogy to the original MMCC theory, one focuses on the noniterative corrections to standard CC energies that recover the exact, full configuration-interaction energies. One of the advantages of the biorthogonal MMCC theory, which will be further analyzed and extended to excited states in a separate paper, is a rigorous size extensivity of the basic ground-state CR-CC(L) approximations that result from it, which was slightly violated by the original CR-CCSD(T) and CR-CCSD(TQ) approaches. This includes the CR-CCSD(T)(L) or CR-CC(2,3) method discussed in this paper, in which one corrects the CCSD energy by the relatively inexpensive noniterative correction due to triples. Test calculations for bond breaking in HF, F(2), and H(2)O indicate that the noniterative CR-CCSD(T)(L) or CR-CC(2,3) approximation is very competitive with the standard CCSD(T) theory for nondegenerate closed-shell states, while being practically as accurate as the full CC approach with singles, doubles, and triples in the bond-breaking region. Calculations of the activation enthalpy for the thermal isomerizations of cyclopropane involving the trimethylene biradical as a transition state show that the noniterative CR-CCSD(T)(L) approximation is capable of providing activation enthalpies which perfectly agree with experiment.  相似文献   

11.
Second- and third-order perturbation corrections to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) incorporating excited configurations in the space of triples [EOM-CCSD(2)T and (3)T] or in the space of triples and quadruples [EOM-CCSD(2)TQ] have been implemented. Their ground-state counterparts--third-order corrections to coupled-cluster singles and doubles (CCSD) in the space of triples [CCSD(3)T] or in the space of triples and quadruples [CCSD(3)TQ]--have also been implemented and assessed. It has been shown that a straightforward application of the Rayleigh-Schrodinger perturbation theory leads to perturbation corrections to total energies of excited states that lack the correct size dependence. Approximations have been introduced to the perturbation corrections to arrive at EOM-CCSD(2)T, (3)T, and (2)TQ that provide size-intensive excitation energies at a noniterative O(n(7)), O(n(8)), and O(n(9)) cost (n is the number of orbitals) and CCSD(3)T and (3)TQ size-extensive total energies at a noniterative O(n(8)) and O(n(10)) cost. All the implementations are parallel executable, applicable to open and closed shells, and take into account spin and real Abelian point-group symmetries. For excited states, they form a systematically more accurate series, CCSD1 eV) and the ground-state wave function has single-determinant character. In other cases, however, the corrections tend to overestimate the triples and quadruples effects, the origin of which is discussed. For ground states, the third-order corrections lead to a rather small improvement over the highly effective second-order corrections [CCSD(2)T and (2)TQ], which is a manifestation of the staircase convergence of perturbation series.  相似文献   

12.
Explicitly correlated coupled-cluster theory has developed into a valuable computational tool for the calculation of electronic energies close to the limit of a complete basis set of atomic orbitals. In particular at the level of coupled-cluster theory with single and double excitations (CCSD), the space of double excitations is quickly extended towards a complete basis when Slater-type geminals are added to the wave function expansion. The purpose of the present article is to demonstrate the accuracy and efficiency that can be obtained in computational thermochemistry by a CCSD model that uses such Slater-type geminals. This model is denoted as CCSD(F12), where the acronym F12 highlights the fact that the Slater-type geminals are functions f(r 12) of the interelectronic distances r 12 in the system. The performance of explicitly correlated CCSD(F12) coupled-cluster theory is demonstrated by computing the atomization energies of 73 molecules (containing H, C, N, O, and F) with an estimated root-mean-square deviation from the values compiled in the Active Thermochemical Tables of σ = 0.10 kJ/mol per valence electron. To reach this accuracy, not only the frozen-core CCSD basis-set limit but also high-order excitations (connected triple and quadruple excitations), core–valence correlation effects, anharmonic vibrational zero-point energies, and scalar and spin–orbit relativistic effects must be taken into account.  相似文献   

13.
To assess the limits of single-reference coupled-cluster (CC) methods for potential-energy surfaces, several methods have been considered for the inclusion of connected quadruple excitations. Most are based upon the factorized inclusion of the connected quadruple contribution (Qf) [J. Chem. Phys. 108, 9221 (1998)]. We compare the methods for the treatment of potential-energy curves for small molecules. These include CCSD(TQf), where the initial contributions of triple (T) and factorized quadruple excitations are added to coupled-cluster singles (S) and doubles (D), its generalization to CCSD(TQf), where instead of measuring their first contribution from orders in H, it is measured from orders in H=e(-(T1+T2))He(T1+T2); renormalized approximations of both, and CCSD2 defined in [J. Chem. Phys. 115, 2014 (2001)]. We also consider CCSDT, CCSDT(Qf), CCSDTQ, and CCSDTQP for comparison, where T, Q, and P indicate full triple, quadruple, and pentuple excitations, respectively. Illustrations for F2, the double bond breaking in water, and N2 are shown, including effects of quadruples on equilibrium geometries and vibrational frequencies. Despite the fact that no perturbative approximation, as opposed to an iterative approximation, should be able to separate a molecule correctly for a restricted-Hartree-Fock reference function, some of these higher-order approximations have a role to play in developing new, more robust procedures.  相似文献   

14.
To approach the complete basis set limit of the "gold-standard" coupled-cluster singles and doubles plus perturbative triples [CCSD(T)] method, we extend the recently proposed perturbative explicitly correlated coupled-cluster singles and doubles method, CCSD(2)(R12) [E. F. Valeev, Phys. Chem. Chem. Phys. 8, 106 (2008)], to account for the effect of connected three-electron correlations. The natural choice of the zeroth-order Hamiltonian produces a perturbation expansion with rigorously separable second-order energy corrections due to the explicitly correlated geminals and conventional triple and higher excitations. The resulting CCSD(T)(R12) energy is defined as a sum of the standard CCSD(T) energy and an amplitude-dependent geminal correction. The method is technically very simple: Its implementation requires no modification of the standard CCSD(T) program and the formal cost of the geminal correction is small. We investigate the performance of the open-shell version of the CCSD(T)(R12) method as a possible replacement of the standard complete-basis-set CCSD(T) energies in the high accuracy extrapolated ab initio thermochemistry model of Stanton et al. [J. Chem. Phys. 121, 11599 (2004)]. Correlation contributions to the heat of formation computed with the new method in an aug-cc-pCVXZ basis set have mean absolute basis set errors of 2.8 and 1.0 kJmol when X is T and Q, respectively. The corresponding errors of the standard CCSD(T) method are 9.1, 4.0, and 2.1 kJmol when X=T, Q, and 5. Simple two-point basis set extrapolations of standard CCSD(T) energies perform better than the explicitly correlated method for absolute correlation energies and atomization energies, but no such advantage found when computing heats of formation. A simple Schwenke-type two-point extrapolation of the CCSD(T)(R12)aug-cc-pCVXZ energies with X=T,Q yields the most accurate heats of formation found in this work, in error on average by 0.5 kJmol and at most by 1.7 kJmol.  相似文献   

15.
We describe a fully size-extensive alternative of the reduced multireference (RMR) coupled-cluster (CC) method with singles (S) and doubles (D) that generates a subset of higher-than-pair cluster amplitudes, using linearized CC equations from the full CC chain, projected onto the corresponding higher-than-doubly excited configurations. This approach is referred to as partially linearized (pl) MR CCSD method and characterized by the acronym plMR CCSD. In contrast to a similar CCSDT-1 method [Y. S. Lee et al., J. Chem. Phys. 81, 5906 (1984)] this approach also considers higher than triples (currently up to hexuples), while focusing only on a small subset of such amplitudes, referred to as the primary ones. These amplitudes are selected using similar criteria as in RMR CCSD. An extension considering secondary triples via the standard (T)-type corrections, resulting in the plMR CCSD(T) method, is also considered. The relationship of RMR and plMR CCSD and CCSD(T) approaches is discussed, and their performance and characteristics are the subject of the subsequent Part II of this paper.  相似文献   

16.
《印度化学会志》2021,98(11):100166
In this paper, three lowest vertical ionization potentials of ozone molecule are presented using four different approximate triples-corrected methods, in addition to the full singles and doubles level, within the Fock-space coupled-cluster theory. One of them is third-order correction and the other three are fourth-order triples approximations, two of which are partial fourth-order corrections. Ozone represents a major challenge due to the multi-reference nature. The value of the partial fourth-order approximations has been highlighted. In particular, we identify a reliable and computationally cheap partial fourth-order scheme.  相似文献   

17.
Large scale coupled-cluster benchmark calculations have been carried out to determine the barrier height of the F+H2 reaction as accurately as possible. The best estimates for the barrier height of the linear and bent transition states amount to 2.16 and 1.63 kcal/mol, respectively. These values include corrections for core correlation, scalar-relativistic effects, spin-orbit effects, as well as the diagonal Born-Oppenheimer correction. The CCSD(T) basis-set limits are estimated using extrapolation techniques with augmented quintuple and sextuple-zeta basis sets, and remaining N-electron errors are determined using coupled-cluster singles, doubles, triples, quadruples calculations with up to augmented quintuple-zeta basis sets. The remaining uncertainty is estimated to be less than 0.1 kcal/mol. The coupled-cluster results are used to calibrate multireference configuration-interaction calculations with empirical scaling of the correlation energy.  相似文献   

18.
The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD) that is perturtatively corrected for triples [RMR CCSD(T)] is employed to compute the forward and reverse barrier heights for 19 non-hydrogen-transfer reactions. The method represents an extension of the conventional single-reference (SR) CCSD(T) method to multireference situations. The results are compared with a benchmark database, which is essentially based on the SR CCSD(T) results. With the exception of seven cases, the RMR CCSD(T) results are almost identical with those based on SR CCSD(T), implying the abatement of MR effects at the SD(T) level relative to the SD level. Using the differences between the RMR CCSD(T) and CCSD(T) barrier heights as a measure of MR effects, modified values for barrier heights of studied reactions are given.  相似文献   

19.
The explicitly-correlated coupled-cluster method CCSD(T)(R12) is extended to include F12 geminal basis functions that decay exponentially with the interelectronic distance and reproduce the form of the average Coulomb hole more accurately than linear-r(12). Equations derived using the Ansatz 2 strong orthogonality projector are presented. The convergence of the correlation energy with orbital basis set for the new CCSD(T)(F12) method is studied and found to be rapid, 98% of the basis set limit correlation energy is typically recovered using triple-zeta orbital basis sets. The performance for reaction enthalpies is assessed via a test set of 15 reactions involving 23 molecules. The title statement is found to hold equally true for total and relative correlation energies.  相似文献   

20.
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号