共查询到20条相似文献,搜索用时 15 毫秒
1.
Rao JS Dinadayalane TC Leszczynski J Sastry GN 《The journal of physical chemistry. A》2008,112(50):12944-12953
Hydration of mono- and divalent metal ions (Li(+), Na(+), K(+), Be(2+), Mg(2+) and Ca(2+)) has been studied using the DFT (B3LYP), second-order M?ller-Plesset (MP2) and CCSD(T) perturbation theory as well as the G3 quantum chemical methods. Double-zeta and triple-zeta basis sets containing both (multiple) polarization and diffuse functions were applied. Total and sequential binding energies are evaluated for all metal-water clusters containing 1-6 water molecules. Total binding energies predicted at lower levels of theory are compared with those from the high level G3 calculations, whereas the sequential binding energies are compared with available experimental values. An increase in the quality of the basis set from double-zeta to triple-zeta has a significant effect on the sequential binding energies, irrespective of the geometries used. Within the same group (I or II), the sequential binding energy predictions at the MP2 and B3LYP vary appreciably. We noticed that, for each addition of a water molecule, the change of the M-O distance in metal-water clusters is higher at the B3LYP than at the MP2 level. The charge of the metal ion decreases monotonically as the number of water molecules increase in the complex. 相似文献
2.
Disha Anchaliya Uma Sharma 《Journal of inclusion phenomena and macrocyclic chemistry》2014,79(3-4):465-471
The synthetic model systems based on the study of supramolecular compounds are proficient in mimicking the biological processes so as to get the insight of their processes. In this perspective, a series of naphthaquinone derived redox switchable ionophores namely D1 (2,3,5,6,8,9,11,12-octahydronaphtho [2,3b] [1,4,7,10,13] pentaoxacyclo octadecine-14,19-dione) and D2 (2,3,5,6,8,9-hexahydronaphtho[2,3-b] [1,4,7,10] tetraoxacyclododecine-11,16-dione) have been synthesized and interacted with Li+, Na+, K+, Ca2+, Mg2+ cations. The isolated solid state soft materials obtained after interaction were characterized by melting point, TLC, 1H NMR spectroscopy and CHN estimation. The extraction, transport potential and stability constant determination of these ionophores towards cations helped in investigating their binding strength in solution. The selective extraction of Na+ and Li+ by D1 and D2 correspondingly proves them an efficient compound for the manufacturing of chemosensor. Whereas efficient transport of Mg2+ by both the ionophores especially by D1 may assist in developing biomodels for understanding its transport through membrane in living system. The selectivity of these ionophores towards metal ions can be modulated by molecular tailoring. 相似文献
3.
The geometries of the complexes of Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cations with different possible 2,6-dithiopurine anions (DTP) were studied. The complexes were optimized at the B3LYP
level and the 6-311++G(d, p) basis set. The interactions of the metal cations at different nucleophilic sites of various possible
2,6-dithiopurine anions were considered. It was revealed that metal cations would interact with 2,6-dithiopurine anions in
a bicoordinate manner. In the gas phase, the most preferred position for the interaction of Li+, Na+, and K+ cations is between the N3 and S2 sites, while all divalent cations Be2+, Mg2+, and Ca2+ prefer binding between the N7 and S6 sites of the corresponding 2,6-dithiopurine. The influence of aqueous solvent on the relative stability of different complexes
has been examined using the Tomasi’s polarized continuum model. The basis set superposition error (BSSE) corrected interaction
energy was also computed for complexes. The AIM theory has been applied to analyze the properties of the bond critical points
(electron densities and their Laplacians) involved in the coordination between 2,6-dithiopurine anions and the metal cations.
It was revealed that aqueous solution would have significant effect on the relative stability of complexes obtained by the
interaction of 2,6-dithiopurine anions with Mg2+ and Ca2+ cations. The effect of metal cations on different NH and CS stretching vibrational modes of 2,6-dithiopurine has also been
discussed. 相似文献
4.
5.
A Monte Carlo simulation for a methane molecule within a cluster of 202 water molecules is presented and compared with previous studies by Scheraga and Beveridge. Whereas the structural information obtained agrees with previous findings, the energy points to the need for a very large number of Monte Carlo steps and for a different algorithm to compute the partial molar internal energy. 相似文献
6.
7.
The solubilities of the quaternary system Li^+,K^+,Mg2^+//Cl^--H2O were investigated at 348 K via isothermal evaporation.The densities and refractive indices of its equilibrated solution were also determined experimentally.On the basis of the obtained data,the metastable phase diagram,the water content diagram,the diagrams of the density and refractive index against the composition of this quaternary system were constructed.The quaternary system Li^+,K^+,Mg^2+//Cl^--H2O at 348 K belongs to a complex type with the formation of two carnallite double salts,which are potassium carnallite(K-carnallite) and lithium carnallite(Li-carnallite).There are five salts like potassium chloride (KCl),lithium chloride monohydrate(LiCl.H2O),bischofite(MgCl2·6H2O),K-carnallite(KCl·MgCl2·6H2O) and Li-carnallite(LiCl·MgCl2·7H2O),seven unvariant curves named AH3,BH2,CH3,DH1,EH1,H1H2 and H2H3,and three invariant points,namely H1,H2 and H3,included in this metastable phase diagram.Comparisons between the stable phase diagram at 298 K and metastable phase diagram at 348 K of this quaternary system show that all the crystalline forms of the salts are not changed,whereas the crystallization areas of salts are changed significantly with temperature.The scope of KCl crystallization increases from 82% to 95% and that of K-carnallite decreases from 15.80% to 0.32% along with the temperature increasing from 298 K to 348 K,respectively. 相似文献
8.
Melissa S. Caetano Teodorico C. Ramalho Douglas F. Botrel Elaine F. F. da Cunha Walclee Carvalho de Mello 《International journal of quantum chemistry》2012,112(15):2752-2762
Glyphosate is the active component of one of the top‐selling herbicides, which is also a potent EPSP synthase inhibitor. The herbicide is absorbed by living tissue and translocated via the phloem, to plant roots and rhizomes. When applied directly into the soil it has low activity, due to the high adsorption by soil constituents. Understanding the specific interactions between metals in the soil and glyphosate is the main step in understanding the low activity of the herbicide when applied directly into the ground and not pulverized. We can observe there is a stability order for both tetrahedral and octahedral complexes between glyphosate and metals: Zn>Cu>Co>Fe>Cr>Al>Ca>Mg. © 2012 Wiley Periodicals, Inc. 相似文献
9.
啤酒酵母生理代谢过程中钠、钾、镁、钙离子含量变化的跟踪检测 总被引:5,自引:0,他引:5
采用空气-乙炔火焰原子吸收光谱法分别测定了啤酒酵母发酵液中的Na^ 、K^ 、Mg^2 、Ca^2 离子动态变化中的含量,用La^3 盐消除P对Ca^3 的干扰,以Sr^2 盐作为Na^ 、K^ 的消电离剂。本实验室采用配制培养基,通过对不同种类及不同发酵阶段培养的发酵液样品进行测定,以研究在啤酒酵母生长代谢过程中Na^ 、K^ 、Mg^2 、Ca^2 离子代谢动态变化。方法的Na^ 、K^ 、Mg^2 、Ca^2 相对标准偏差(RSD)分别为0.31%,0.73%。1.78%,0.28%;样品加标回收率为98%-107%;检出限:Na^ 为0.159mg/L,K^ 为0.789nag/L,Mg^2 为0.039mg/L,Ca^2 为0.029mg/L。该方法简便快速,具有很好的精密度。 相似文献
10.
The structures and energies of complexes obtained upon interaction between glutathione (GSH) and alkali (Li+, Na+, K+), or alkaline earth metal (Be2+, Mg2+, Ca2+), or group IIIA (Al3+) cations were studied using quantum chemical density functional theory. The characteristics of the interactions between GSH and the metal cations at different nucleophilic sites of GSH were examined selecting systematically, both mono- and multi-coordinating were taken into account. The results indicated that the heteroatom of GSH, the radius and charge of metal ion, and the coordination number of the metal cation with the ligand played important roles in determining the stability of these complexes. Moreover, the intramolecular hydrogen migration in GSH could be promoted by the metal cations during coordination reaction. Furthermore, the Al3+ cation might catalyze the decarboxylation reaction and stimulate the formation of covalent bond between S atom and adjacent O atom of GSH. 相似文献
11.
Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system. 相似文献
12.
《印度化学会志》2023,100(8):101059
In recent years, the chelation between quercetin and transition metals has attracted much attention because the complexes formed have higher antioxidant and medicinal activities. However, the theoretical investigation of the mechanisms of flavonoid functioning along with the structures of quercetin–metal complexes is still not sufficiently studied. In this research work, quercetin–complexes with Na+, K+, Mg2+, Ca2+, and Al3+ are studied theoretically by using density functional theory (DFT) method in order to investigate the stability, reactivity, nature of interaction, and the application of the quercetin-metal complexes as potential antioxidants. From the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) results, the K-quercetin salt was observed to be more stable as compared to the other metals while Ca seemed to be the most reactive with the least values in the neutral form of the metal - quercetin interaction. The results of the antioxidant activity in the neutral state present Ca and Mg to have the higher values of ionization potential (IP) indicating that the antioxidant activity of Ca/Mg complexes with quercetin are less pronounced, while K-complex with the least value indicating the higher the electron donating reactivity. In comparison, it is worth to note that Mg-Q and Ca-Q in the deprotonated state of quercetin showcase lower IP, higher ability of H-atom transfer and electron transfer reactivity, therefore, better antioxidant candidates of the quercetin complexes than their other counterparts. 相似文献
13.
14.
The activity of atropine on the complexation and transport of Na(+), K(+), Mg(2+) and Ca(2+) ions across a liquid membrane was investigated using a spectrophotometric method. Atropine is a natural drug that blocks muscarinic receptors. It is a competitive antagonist of the action of acetylcholine and other muscarinic agonists. Atropine is shown to extract Na(+), K(+), Mg(2+) and Ca(2+) ions from an aqueous phase into an organic one with a preference for Ca(2+) ions. According to a kinetic study, divalent cations (Mg(2+) and Ca(2+)) are more rapidly transported than monovalent ones (Na(+) and K(+)). In both complexation and transport, the flux of the ions increases with the increase of atropine concentration. Atropine might act on the membrane permeability; its complexation and ionophoric properties shed new lights on its therapeutic properties. 相似文献
15.
GUO Xiong hua LI Shu ping HOU Wan guo ** HAN Shu hua HU Ji fan LI Dong qing . Key Laboratory for Colloid Interface Chemistry of State Education Ministry . Physics Microelectronics Institute Shandong University Jinan P.R. China . Department of Mechanical & Industrial Engineering University of Toronto Toronto MS G Canada 《高等学校化学研究》2003,19(2):211-215
IntroductionLayered double hydroxides( LDHs) with hy-drotalcite ( HT ) - type structure are composed oftrivalent and divalent metal ions and have the gen-eral formula[1] ,[M2 + 1-x M3 + x ( OH) 2 ]x+ An-x/ n· m H2 O,where M3 + is a trivalentmental ion,such as Al3 + ,Fe3 + ,La3 + ,Ni3 + ,Mn3 + etc.,M2 + is a divalentmetal ion,such as Mg2 + ,Zn2 + ,Ca2 + ,Cu2 + ,Co2 +etc.,An-is a charge compensating anion,such asOH-,Cl-,NO-3 ,CO2 -3 etc.,m is the number ofthe moles of co- intercalat… 相似文献
16.
Shen Xingmei Ge Jun Wang Ping Wu Xingrong Li Liaosha 《Journal of Sol-Gel Science and Technology》2018,85(2):480-485
Journal of Sol-Gel Science and Technology - Silicic acid was prepared by acid hydrolysis of water-quenched calcium silicate, and Ca2+, Al3+, and Fe3+ were added to investigate the polymerization... 相似文献
17.
N. El-Said A. S. Mekhael S. M. Khalifa H. F. Aly 《Journal of Radioanalytical and Nuclear Chemistry》1996,208(1):257-270
In this work Strontium was separated selectively form, Pd2+, Ni2+ and Ca3+ using anionic resins of Amberlite type IRA-900 and IRA-410 from nitrate medium. The Separation of strontium by strongly basic anion exchangers IRA-410 and IRA-900 from simulated waste containing, Sr2+, Eu3+, Ce3+, Pd2+, Rh3+, Ru3+, VO2 2+, Fe3+, Cr3+, Ni2+, Al3+, Ca2+, and Cs+, in K2SO4/nitrate medium which adsorbed as strontium sulphate complex was achieved through ligand- ligan exchange. The elution of strontium carried out via “loading” the column with a solution of 0.03N EDTA in presence of 0.1N NaNO3 at pH7 where Sr2+ has low Kd value. An inductively Coubled Plasma — Optical Emission Spectrometry (ICP — OES) of ARL type model 3520, was used for elemental analysis. 相似文献
18.
Hristo Rasheev Agnieszka Seremak Radostina Stoyanova Alia Tadjer 《Molecules (Basel, Switzerland)》2022,27(3)
To create both greener and high-power metal-ion batteries, it is of prime importance to invent an unprecedented electrode material that will be able to store a colossal amount of charge carriers by a redox mechanism. Employing periodic DFT calculations, we modeled a new metal-organic framework, which displays energy density exceeding that of conventional inorganic and organic electrodes, such as Li- and Na-rich oxides and anthraquinones. The designed MOF has a rhombohedral unit cell in which an Ni(II) node is coordinated by 2,5-dicyano-p-benzoquinone linkers in such a way that all components participate in the redox reaction upon lithiation, sodiation and magnesiation. The spatial and electronic changes occurring in the MOF after the interaction with Li, Na and Mg are discussed on the basis of calculated electrode potentials versus Li0/Li+, Na0/Na+ and Mg0/Mg2+, respectively. In addition, the specific capacities and energy densities are calculated and used as a measure for the electrode applicability of the designed material. Although the highest capacity and energy density are predicted for Li storage, the greater structural robustness toward Na and Mg uptake suggests a higher cycling stability in addition to lower cost. The theoretical results indicate that the MOF is a promising choice for a green electrode material (with <10% heavy metal content) and is well worth experimental testing. 相似文献
19.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination. 相似文献
20.
Bedlechowicz-Sliwakowska I Lingenfelter P Sokalski T Lewenstam A Maj-Zurawska M 《Analytical and bioanalytical chemistry》2006,385(8):1477-1482
In this work, ion-selective electrodes for calcium ion were investigated. Two ionophores were used in the membranes: ETH 1001
and ETH 129. An internal filling solution buffered for primary ion was used that allowed the lower detection limit to be decreased
down to 10−8.8 M. Theoretical and experimental electrode characteristics pertaining to both primary and interfering ions are discussed.
Better behavior was obtained with the electrode prepared with ETH 129 in the membrane. This electrode would be the most likely
candidate for obtaining a low Ca2+ detection limit in measurements performed with high K+, Na+, Mg2+ background, which is found inside the cells of living organisms, for example. The potentiometric response of the electrode
in solutions containing main and interfering ions is in good agreement with simulated curves obtained using the Nernst–Planck–Poisson
(NPP) model. 相似文献